Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Produktregel:

    Wenn f(x) = u(x)⋅v(x) dann ist f (x) = u(x)⋅v(x) + v(x)⋅u(x)

Bestimme die Ableitung auf zwei verschiedene Weisen und gib diese jeweils im letzten Schritt vereinfacht an. x-Potenzen sind in der Form "x^n" einzugeben.

f
 
x
=
2x
·
1
x
  • Möglichkeit 1: direkt mit Produktregel
f '
 
x
=
·
1
x
+
·
=
  • Möglichkeit 2: f zuerst ausmultiplizieren
f
 
x
=
f '
 
x
=
  • Nebenrechnung

Produktregel:

Wenn f(x) = u(x)⋅v(x) dann ist f (x) = u(x)⋅v(x) + v(x)⋅u(x)

Beispiel
f
 
x
=
x
2
·
sin(x)
f '
 
x
=
?
Kettenregel:

Wenn f(x) = g( h(x) ), dann ist f (x) = g( h(x) )⋅h(x)

Beispiel 1
f
 
x
=
x
2
3x
f '
 
x
=
?
Beispiel 2
f
 
x
=
1
3x
·
sin
x
f '
 
x
=
?
Quotientenregel:

Wenn f(x)= u(x) / v(x) dann ist f (x) = [ u(x)⋅v(x) − v(x)⋅u(x) ] / [v(x)]2

Spezialfall der Kettenregel:
Innere Funktion ist linear
f(x) = h(mx+c)
f´(x) = m · h´(mx+c)
Einige Ableitungen:
f(x) = ex, f´(x) = ex
f(x) = sin(x), f´(x) = cos(x)
f(x) = cos(x), f´(x) = -sin(x)
f(x) = xn, f´(x) = n xn-1