Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Unterscheide:
    • Bei a · x = b muss man (links und rechts) durch a dividieren, um x zu erhalten
    • Bei x : a = b muss man (links und rechts) mit a multiplizieren, um x zu erhalten
    • Bei x + a = b muss man (links und rechts) a subtrahieren, um x zu erhalten
    • Bei x − a = b muss man (links und rechts) a addieren, um x zu erhalten
    • Bei a − x = b muss man (links und rechts) x addieren und b subtrahieren, um x zu erhalten

Welche Umformung führt auf direktem Wege zur Lösung?

5
=
9x
?
     
 
5
     
 
9x
     
 
:
5
     
 
:
9
  • Nebenrechnung

Lernvideo
Lineare Gleichungen (Teil 1)
Lernvideo
Lineare Gleichungen (Teil 2)

Unterscheide:
  • Bei a · x = b muss man (links und rechts) durch a dividieren, um x zu erhalten
  • Bei x : a = b muss man (links und rechts) mit a multiplizieren, um x zu erhalten
  • Bei x + a = b muss man (links und rechts) a subtrahieren, um x zu erhalten
  • Bei x − a = b muss man (links und rechts) a addieren, um x zu erhalten
  • Bei a − x = b muss man (links und rechts) x addieren und b subtrahieren, um x zu erhalten
Beispiel 1
Löse die Gleichungen
8x
=
3
 
   und   
 
8
y
=
3
Beispiel 2
Löse die Gleichungen
2
3
 
x
=
7
1
6
 
   und   
 
2
3
+
x
=
7
1
6
Gehe bei umfangreicheren linearen Gleichungen nach folgendem Schema vor
  1. rechte und linke Seite so weit wie möglich vereinfachen
  2. durch Addition und Subtraktion die Gleichung in die Form ax = b bringen, d.h. zunächst alle x-Vielfachen auf die eine Seite, die andere Seite x-frei
  3. zuletzt durch a teilen
Beispiel
Löse die Gleichung
11x
2
3
=
3
+
2
1
5