Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Eine lineare Funktion mit der Gleichung y = m·x + t ergibt grafisch immer eine Gerade. Dabei ist m die Steigung (zeigt an, wie stark die Gerade steigt oder fällt) und t der y-Achsenabschnitt (zeigt an, wo die Gerade die y-Achse schneidet) der Gerade.

    • Ist m positiv, so steigt die Gerade (von links nach rechts)
    • Ist m negativ, so fällt die Gerade (von links nach rechts)
    • Ist m = 0, so verläuft die Gerade parallel zur x-Achse

Entscheide aufgrund der Skizze des Grafen.

graphik
Die Steigung m ist .
Der y-Achsenabschnitt t ist .
  • Nebenrechnung

Lernvideo
Lineare Funktionen (Teil 1)
Lernvideo
Lineare Funktionen (Teil 2)

Eine lineare Funktion mit der Gleichung y = m·x + t ergibt grafisch immer eine Gerade. Dabei ist m die Steigung (zeigt an, wie stark die Gerade steigt oder fällt) und t der y-Achsenabschnitt (zeigt an, wo die Gerade die y-Achse schneidet) der Gerade.

  • Ist m positiv, so steigt die Gerade (von links nach rechts)
  • Ist m negativ, so fällt die Gerade (von links nach rechts)
  • Ist m = 0, so verläuft die Gerade parallel zur x-Achse
Beispiel
Welche Informationen lassen sich bzgl. der Steigung m und des y-Achsen-Abschnitts t ablesen?
graphik
Eine Besonderheit bilden waagrechte und senkrechte Geraden.
  • senkrechte Gerade werden durch die Gleichung "x = c" beschrieben
  • waagrechte Gerade werden durch die Gleichung "y = c" beschrieben.

Beachte, dass die Gleichung der senkrechten Gerade keine Funktionsgleichung ist und somit weder ein y-Achsenabschnitt noch eine Steigung angegeben werden kann. Das ist schon daran erkennbar, dass hier Punkte des Graphen "übereinander" liegen, was bei einer Funktion nicht vorkommen darf.

Beispiel
Gib für die eingezeichneten Geraden sowie für die x-und y-Achse eine Geradengleichung an:
graphik
Ist eine Gerade g durch ihren y-Achsenabschnitt t und einen beliebigen Punkt P ∈ g gegeben, so kann man die Steigung m leicht bestimmen:
  1. Ausgangspunkt ist die Geradengleichung y = m·x + t (für t setze den bekannten y-Achsenabschnitt ein).
  2. Setze dann den Punkt P ein, d.h. ersetze x und y durch die Koordinaten von P.
  3. Löse schließlich die Gleichung nach dem gesuchten m auf.
Beispiel
Welche Steigung hat die Gerade, die durch t = 2,5 und P(2 | -0,5) gegeben ist?
Wie lautet die Geradengleichung?
Ist eine Gerade g durch ihre Steigung m und einen beliebigen Punkt P ∈ g gegeben, so kann man den y-Achsenabschnitt t leicht bestimmen:
  1. Ausgangspunkt ist die Geradengleichung y = m·x + t (für m setze die bekannte Steigung ein).
  2. Setze dann den Punkt P ein, d.h. ersetze x und y durch die Koordinaten von P.
  3. Löse schließlich die Gleichung nach dem gesuchten t auf.
Beispiel
Wo schneidet die Gerade, die durch m = -1,6 und P(2 | -0,5) gegeben ist, die y-Achse?)
Wenn von einem Punkt auf der Geraden nur die x-Koordinate bekannt ist, erhält man die y-Koordinate, indem man die x-Koordinate in den Funktionsterm einsetzt und den Wert des Funktionsterms berechnet. Das Ergebnis ist die y-Koordinate.

Wenn von einem Punkt auf der Geraden nur die y-Koordinate bekannt ist, erhält man die x-Koordinate, indem man den Funktionsterm gleich der y-Koordinate setzt und die entstehende Gleichung nach x auflöst. Das Ergebnis ist die x-Koordinate.
Beispiel
Die beiden Punkte liegen auf der Geraden. Berechne die fehlenden Werte.
Gerade:
 
y
=
3
·
x
1
Punkte:
P
 
2
 
|
 
?
Q
 
?
 
|
 
14
Um zu überprüfen, ob ein Punkt P(x | y) auf der Geraden liegt, setzt man den x-Wert in den Funktionsterm ein und berechnet den Termwert. Ist das Ergebnis der y-Wert des Punktes, dann liegt der Punkt auf der Geraden.
Beispiel
Liegt der Punkt P auf der Geraden g?
Gerade:
 
y
=
2
·
x
+
5
Punkt:
 
P
 
3
 
|
 
10
Um zu überprüfen, ob ein Punkt (a|b) über, auf oder unter dem Grafen einer Funktion liegt, setzt man a in den Funktionsterm f(x) ein. Der Punkt liegt
  • über dem Grafen, wenn b > f(a)
  • auf dem Grafen, wenn b = f(a)
  • unter dem Grafen, wenn b < f(a)
Beispiel
g
:
 
 
y
=
1
3
 
x
+
2
3
;
 
 
 
 
 
 
 
 
A
 
2
 
|
 
0
;
 
 
 
 
B
 
4
 
|
 
2,5
;
 
 
 
 
C
 
8
 
|
 
3
A liegt    
 
?über
 
   
 
?auf
 
   
 
?unter der Geraden g
B liegt    
 
?über
 
   
 
?auf
 
   
 
?unter der Geraden g
C liegt    
 
?über
 
   
 
?auf
 
   
 
?unter der Geraden g
Ist eine Gerade g durch zwei Punkte A(x1|y1) und B(x2|y2) gegeben, so kann man ihre Steigung m so berechnen:
  1. Berechne die Differenz der y-Werte beider Punkte, also Δy = y2 − y1.
  2. Berechne ebenso die Differenz der x-Werte beider Punkte, also Δx = x2 − x1.
  3. Der Bruch Δy / Δx ergibt die Steigung m.
Beispiel
Ermittle die Steigung der Gerade, die durch die Punkte (-1,5 | 2,5) und (0 | -3) geht.
Um den Funktionsterm einer abgebildeten Geraden zu ermitteln, gehe wie folgt vor:
  1. Der y-Achsenabschnitt lässt sich direkt aus dem Schnittpunkt der Geraden mit der y-Achse ablesen.
  2. Suche zwei Punkte auf der Geraden, deren Koordinaten sich gut ablesen lassen und betrachte das Steigungsdreieck zwischen diesen beiden Punkten. Die Breite des Dreiecks ergibt den Nenner, die Höhe des Dreiecks den Zähler der Steigung.
  3. Falls die Gerade fällt, schreibe noch ein Minus vor den oben ermittelten Bruch. Damit hast du die Steigung.
Beispiel 1
Lies jeweils die genauen Werte für m und c ab:
graphik
Beispiel 2
Lies jeweils die genauen Werte für m und t ab:
graphik
Um die Gerade mit der Gleichung y=mx+t zu zeichnen, gehe am besten wie folgt vor:
  1. Stelle die Steigung m als Bruch dar (falls nicht schon als Bruch gegeben), z.B. m = -1/4 .
  2. Gehe vom Schnittpunkt mit der y-Achse, also P(0|t) aus um den Nennerbetrag, hier also um 4, nach rechts.
  3. Gehe dann um den Zählerbetrag nach oben (falls m postiv) bzw. unten (falls m negativ). Hier also um 1 nach unten. Damit hast du einen zweiten Punkt und kannst die Gerade zeichnen.
Die Schritte 2 und 3 können auch vertauscht werden. Ebenso ist es egal, ob du Kästchen oder ganze Einheiten abzählst. Wichtig ist nur, dass du nach rechts und nach oben (bzw. unten) die gleichen Schrittlängen abgehst.
Beispiel
Zeichne die Gerade mit folgender Gleichung:
 
y
=
2
1
3
 
x
Sind zwei Geraden parallel, so besitzen sie die selbe Steigung.

Sind zwei Geraden senkrecht, so erfüllen ihre Steigungen die Gleichung m1 · m2 = -1.

Ist eine Gerade durch zwei Punkte gegeben, so geht man wie folgt vor, um ihre Gleichung, sprich m und t, zu ermitteln:

  1. Bestimme zunächst die Steigung m = Δy / Δx .
  2. Setze dann in die Gleichung y = m·x + t einen der beiden Punkte ein und löse die Gleichung nach t auf.
Beispiel
Ermittle die Gleichung der Gerade, die durch die Punkte (-1|1) und (5|-4) geht.
Beispiel
Dirk wiegt 72 kg und möchte mit Krafttraining Muskelmasse aufbauen, um Wrestler im Superschwergewicht zu werden. Mit Hilfe eines strengen Trainings- und Ernährungsplans will er monatlich 5 kg zulegen. Sebastian hat mit 102 kg deutlich Übergewicht und will durch eine disziplinierte Diät wöchentlich 500g abnehmen. Nach wie vielen Wochen wären Dirk und Sebastian gleich schwer, wenn sie mit der Umsetzung ihrer Pläne zur selben Zeit beginnen und durchhalten?