Hilfe
  • Allgemeine Hilfe zu diesem Level
    Bringe in die Form   ♦ (x - ♣)² + ♥   (schreibe 0 an der richtigen Stelle).
    • y = x²:
      Normalparabel mit Scheitel S im Ursprung
    • y = (x + 2)²:
      Um 2 nach links (bei "x − 2" nach rechts) verschobene Normalparabel, also Scheitel S(-2|0)
    • y = x² + 2:
      Um 2 nach oben (bei "x − 2" nach unten) verschobene Normalparabel, also Scheitel S(0|2)
    • y = (x − 1)² + 3:
      Um 1 nach rechts und um 3 nach oben verschobene Normalparabel, also Scheitel S(1|3)
    Diese Zusammenhänge gelten auch, wenn ein Faktor vor x² bzw. (...)² steht.

Gib die Koordinaten des Scheitels an. Evtl. auftretende Brüche sind in der Form "a/b" bzw. "-a/b" anzugeben.

  • y
    =
    2x
    2
    1
    S
     
     
    |
     
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
  • y = x²:
    Normalparabel mit Scheitel S im Ursprung
  • y = (x + 2)²:
    Um 2 nach links (bei "x − 2" nach rechts) verschobene Normalparabel, also Scheitel S(-2|0)
  • y = x² + 2:
    Um 2 nach oben (bei "x − 2" nach unten) verschobene Normalparabel, also Scheitel S(0|2)
  • y = (x − 1)² + 3:
    Um 1 nach rechts und um 3 nach oben verschobene Normalparabel, also Scheitel S(1|3)
Diese Zusammenhänge gelten auch, wenn ein Faktor vor x² bzw. (...)² steht.
Beispiel
Gib die Koordinaten des Scheitels an.
y
=
3
·
x
+
5
2
In einer Wertetabelle sind x- und y-Werte einander gegenübergestellt. Die Wertetabelle erhält man, indem man vorgegebene x-Werte in den Funktionsterm einsetzt und so die zugehörigen y-Werte ausrechnet. Die (x|y)-Paare sind Punkte des Grafen.

Die durch y = ax² (a≠0) definierte Parabel hat den Scheitel im Ursprung und ist gegenüber der Normalparabel in y-Richtung um das |a|-fache gestreckt (|a|>1) oder gestaucht (|a|<1). Das Vorzeichen von a legt fest, ob die Parabel nach oben (a positiv) oder nach unten (a negativ) geöffnet ist.

Beispiel
Neben der Normalparabel (schwarz) sind drei verschiedene Parabeln mit der Gleichung y = ax² dargestellt. Lies jeweils das Vorzeichen von a ab und gib an, ob |a|>1 oder |a|<1.
graphik
Die Gleichung einer Parabel sei bis auf den Formfaktor a bekannt. Dann lässt sich a bestimmen, indem man einen Punkt des Graphen aus dem Koordinatensystem abliest, ihn in die Parabelgleichung einsetzt und die Gleichung nach a auflöst.
Beispiel
graphik
Durch die Gleichung y = a⋅(x - xS)² + yS (a≠0) ist eine Parabel mit den Scheitelkoordinaten xS und yS gegeben, die gegenüber der Normalparabel mit der Gleichung y = x²
  • nach unten geöffnet ist, falls a negativ ist und
  • evtl. gestreckt (falls |a|>1) bzw. gestaucht (falls |a|<1) ist.
Beispiel
Abgebildet ist die Parabel mit der Gleichung
y
=
a
·
x
x
S
2
+
y
S
Bestimme a, 
x
S
 und 
y
S
.
graphik
Um zu überprüfen, ob ein Punkt (a|b) über, auf oder unter dem Grafen einer Funktion liegt, setzt man a in den Funktionsterm f(x) ein. Der Punkt liegt
  • über dem Grafen, wenn b > f(a)
  • auf dem Grafen, wenn b = f(a)
  • unter dem Grafen, wenn b < f(a)
Beispiel
f: 
y
=
1
2
 
x
2
x
+
8
;        
A
 
5
 
|
 
1
;   
B
 
2
 
|
 
9
;   
C
 
1
 
|
 
6,5
Gib jeweils an, ob der der Punkt über, auf oder unter der Parabel liegt.
Um eine in Scheitelform gegebene Parabel mit der Gleichung y=a·(x−xS)²+yS ohne Wertetabelle zu zeichnen, geht man am besten vom Scheitel S aus nacheinander um 1, 2, 3 usw. Einheiten nach rechts und dabei um a·1², a·2², a·3² usw. Einheiten nach oben (a>0)oder unten (a<0). Somit erhält man den rechten Parabelast. Der linke ergibt sich durch Spiegelung.
Beispiel
Zeichne die Parabel mit der Gleichung 
y
=
1
2
 
x
3
2
+
1
 in ein Koordinatensystem. Benutze dabei weder den Taschenrechner noch eine schriftliche Wertetabelle.
Weiß man, dass eine Parabel die x-Achse an den Stellen x1 und x2 schneidet, so kann man ihren Scheitel S leicht bestimmen:
  • xS = (x1 + x2) : 2
    Begründung: xS (also die x-Koordinate des Scheitels) liegt aus Symmetriegründen genau in der Mitte des Intervalls [x1 ; x2]
  • yS = p(xS)
    d.h. die y-Koordinate erhält man durch Einsetzen von xS in den Funktionsterm der Parabel
Von der Scheitelpunktform
y = a⋅(x - xS) + yS
kommt man durch ausquadrieren bzw. dem Anwenden der binomischen Formeln zur Normalform:
y = a⋅x² + bx + c
Beispiel
Bringe in die Normalform und gib dann die Parameter a, b und c an:
y
=
5
·
x
+
2
2
1
Die Gleichung einer quadratischen Funktion bzw. Parabel kann von jeder Form aus in jede andere Form umgewandelt werden:
  • Normalform ⇒ Scheitepunktform: mittels quadratischer Ergänzung
  • Normalform ⇒ Nullstellenform: mittels Nullstellenbestimmung, z.B. mit Hilfe der Miternachts- oder der p-q-Formel
  • Scheitelpunktform ⇒ Normalform: Ausmultiplizieren (binomische Formel) und vereinfachen
  • Scheitelpunktform ⇒ Nullstellenform: mittels Nullstellenbestimmung, wobei hier keine Lösungsformel notwendig ist
  • Nullstellenform ⇒ Normalform: Ausmultiplizieren und vereinfachen
  • Nullstellenform ⇒ Scheitelpunktform: xS ergibt sich als Mittelwert der Nullstellen, yS durch Einsetzen von xS in den Funktionsterm
Beispiel
Normalform - Scheitelpunktform - Nullstellenform: Wandle jeweils von der gegebenen in die beiden anderen Formen um.
a) 
y
=
1
3
 
x
+
1
2
2
b) 
y
=
1
2
 
x
2
5x
+
8
c) 
y
=
3
·
x
2
·
x
+
1
Eine quadratische Funktion hat die allgemeine Funktionsgleichung y=ax²+bx+c. Gibt man zwei Punkte auf dem Schaubild der Funktion und einen der Parameterwerte a, b oder c vor, lässt sich die Funktionsgleichung bestimmen. Durch das Einsetzen der zwei Punkte und des Parameterwerts in die Funktionsgleichung y = ax² + bx + c erhält man ein Gleichungssystem mit zwei Unbekannten. Dieses kann mittels Einsetz- oder Subtraktionsverfahren gelöst werden.
Beispiel
Bestimme die Gleichung der Parabel p, die durch die Punkte A und B verläuft.
A
 
2
 
|
 
8
B
 
1
 
|
 
1
p:y
=
ax
2
+
bx
+
9
Bei der Gleichung einer quadratischen Funktion bzw. Parabel unterscheidet man folgende Formen:
  1. Allgemeine Form (Normalform):
    y=ax²+bx+c
    Hieraus lässt sich der Schnittpunkt mit der y-Achse (0|c) ablesen.
     
  2. Scheitelpunktform:
    y=a·(x−xS)²+yS
    Hieraus lässt sich der Scheitelpunkt S(xS|yS) ablesen.
     
  3. Nullstellenform (Produktform/faktorisierte Form):
    y=a·(x−x1)·(x−x2)
    Hieraus lassen sich die Nullstellen x1 und x2 ablesen.
Bestimmte Bewegungsvorgänge (z.B. Ballwurf) und bestimmte Formen (z.B. ein an zwei Stellen befestigtes Seil) können näherungsweise als Teile von Parabeln aufgefasst werden und daher durch quadratische Funktionen modelliert werden. Sind von der Parabel ...
  • ... drei beliebige Punkte bekannt, sollte man ein Gleichungssystem aufstellen, um die Parameter a, b und c der allgemeinen Form zu bestimmen.
  • ... der Scheitelpunkt und ein weiterer Punkt bekannt, sollte man von der Scheitelform ausgehen und den fehlenden Parameter a durch Einsetzen des weiteren Punkts ermitteln.
  • ... die beiden Nullstellen und ein weiterer Punkt bekannt, sollte man von der Nullstellenform ausgehen und den fehlenden Parameter a durch Einsetzen des weiteren Punkts ermitteln.