Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

    √a · √b = √(a · b)

    Ein Quotient von Wurzeln lässt sich als Quotient unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

    √a : √b = √(a : b)

    Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

    a√c + b√c = (a + b)√c

    Achtung: √a + √b ≠ √(a+b)

    Oft kann man teilweise die Wurzel ziehen. Sofern a nicht negativ ist, kann man den Faktor a² unabhängig vom Faktor b radizieren:

    √(a² · b) = √(a²) · √b = a · √b

Vereinfache so weit wie möglich ohne Taschenrechner. Gib Brüche in der Form "a/b" ein. Gib "!" ein, falls das Ergebnis keine rationale Zahl ist.

  • 3
    ·
    27
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

√a · √b = √(a · b)

Ein Quotient von Wurzeln lässt sich als Quotient unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

√a : √b = √(a : b)

Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

a√c + b√c = (a + b)√c

Achtung: √a + √b ≠ √(a+b)

Oft kann man teilweise die Wurzel ziehen. Sofern a nicht negativ ist, kann man den Faktor a² unabhängig vom Faktor b radizieren:

√(a² · b) = √(a²) · √b = a · √b

Beispiel 1
50
·
2
=
?
50
2
=
?
50
=
?
Beispiel 2
9
·
16
=
?
9
+
16
=
?
9
+
16
=
?
Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

√a · √b = √(a · b)

Unter anderem ermöglicht diese Regel, Wurzeln teilweise zu radizieren. Sofern a nicht negativ ist, kann man den Faktor a² unabhängig vom Faktor b radizieren:

√(a² · b) = √(a²) · √b = a · √b

Beispiel
Vereinfache:
3
 
45
·
18
=
?
Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Distributivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel 1
3
·
3
27
=
?
Beispiel 2
Vereinfache:
12
+
20
2
 
27
·
5
36
Beispiel 3
Vereinfache:
3
 
32
108
·
5
 
3
6
Beachte beim Rechnen mit Variablen, dass (weil a auch negativ sein könnte)

√(a²) = | a |

Der Betragstrich ist nicht nötig, wenn a < 0 ausgeschlossen werden kann. Ist hingegen bekannt, dass a negativ ist, kann man statt des Betrags auch konkret schreiben

√(a²) = −a

Ob eine Variable unter der Wurzel positiv oder negativ ist, erschließt sich oft indirekt aus der Aufgabenstellung.

Beispiel 1
Vereinfache (x ≠ 0).
3
 
4x
2
y
:
12y
4
Beispiel 2
Vereinfache (a > 0, b > 0):
a
2
+
ab
a
+
b
:
a
+
1