Hilfe
  • Hilfe speziell zu dieser Aufgabe
    Offensichtlich halbieren sich die eingezeichneten Hilfslinien gegenseitig, oben rechts liegt ein Viertelkreis vor.
  • Allgemeine Hilfe zu diesem Level
  • Figuren, in denen unterschiedliche Kreise, Halbkreise und Viertelkreise vorkommen, lassen sich sowohl vom Umfang als auch vom Flächeninhalt her berechnen, indem man die Einzelumfänge bzw. -flächen addiert.

Berechne den UMFANG der abgebildeten Figur. Verwende für π den Näherungswert 3,14 und ansonsten die ungerundeten Teilergebnisse zum Weiterrechnen. Ergebnis(se) falls erforderlich auf die 1. Dezimalstelle gerundet eingeben!

  • graphik
    u ≈ cm
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lernvideo
Kreissektor

Figuren, in denen unterschiedliche Kreise, Halbkreise und Viertelkreise vorkommen, lassen sich sowohl vom Umfang als auch vom Flächeninhalt her berechnen, indem man die Einzelumfänge bzw. -flächen addiert.
Beispiel
Berechne Umfang und Flächeninhalt der abgebildeten Figur:
graphik
Fläche und Bogenlänge eines Keissektors ("Kuchenstücks") können als Bruchteil der gesamten Kreisfläche bzw. des gesamten Kreisumfangs berechnet werden. Ist α der Mittelpunktswinkel des Sektors, so gilt

ASektor = α/360° · AKreis

b (Bogenlänge) = α/360° · uKreis

Beispiel
Berechne Fläche und Bogenlänge b des Kreissektors mit Mittelpunktswinkel 250° für einen Kreis mit Radius 3cm.
graphik
Bogen und Fläche des Kreissektors verhalten sich zu Umfang und Fläche des Gesamtkreises wie der Mittelpunktswinkel α zu 360°, d.h.

b / u = ASektor / AKreis = α / 360°

Verwende die passende Gleichung - je nachdem, welche Größen gegeben und gesucht sind - um Radius, Bogenlänge, Fläche von einem Kreis bzw. Kreissektor zu bestimmen.
Beispiel
Bestimme die Bogenlänge b und den Flächeninhalt A in Abhängigkeit von a.
graphik
Ein Kreis mit Radius r hat den
  • Durchmesser d = 2r
  • Umfang u = d·π = 2r·π
  • Flächeninhalt A = r²·π

Ver-n-fachung des Radius bedeutet
Ver-n-fachung des Umfangs und
Ver-n²-fachung des Flächeninhalts.

Radius und Durchmesser sind damit zueinander proportional, Radius (bzw. Umfang) und Flächeninhalt dagegen nicht.

Beispiel
Gegeben sind zwei Kreise k1 und k2, von denen man weiß:
6u
1
=
u
2
Vervollständige damit die Gleichungen
r
1
=
?r
2
A
1
=
?A
2