Hilfe
  • Allgemeine Hilfe zu diesem Level
    Umwandlung in die nächstgrößere Längeneinheit (mm → cm → dm → m):
    Kommaverschiebung um eine Stelle nach links
  • Ein Kreis mit Radius r hat den
    • Durchmesser d = 2r
    • Umfang u = d·π = 2r·π
    • Flächeninhalt A = r²·π

Berechne (verwende dabei für π den Näherungswert 3,14) den Umfang eines Kreises mit... Ergebnis(se) falls erforderlich auf die 1. Dezimalstelle gerundet eingeben!

  • ...Radius 5 cm.
    u ≈ dm (beachte die Einheit!)
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lernvideo
Kreisumfang und Kreisfläche

Ein Kreis mit Radius r hat den
  • Durchmesser d = 2r
  • Umfang u = d·π = 2r·π
  • Flächeninhalt A = r²·π
Verdoppelt man den Radius eines Kreises, so verdoppeln sich auch sein Durchmesser und sein Umfang, dagegen vervierfacht sich seine Fläche (2² = 4).

Verdreifacht man den Radius eines Kreises, so verdreifachen sich auch sein Durchmesser und sein Umfang, dagegen verneunfacht sich seine Fläche (3² = 9)

Ver-n-fachung des Radius bedeutet
Ver-n-fachung des Umfangs und
Ver-n²-fachung des Flächeninhalts.

Radius und Durchmesser sind damit zueinander proportional, Radius (bzw. Umfang) und Flächeninhalt dagegen nicht.

Beispiel
Gegeben sind zwei Kreise k1 und k2, von denen man weiß:
6u
1
=
u
2
Vervollständige damit die Gleichungen
r
1
=
?r
2
A
1
=
?A
2
Figuren, in denen unterschiedliche Kreise, Halbkreise und Viertelkreise vorkommen, lassen sich sowohl vom Umfang als auch vom Flächeninhalt her berechnen, indem man die Einzelumfänge bzw. -flächen addiert.
Beispiel
Berechne Umfang und Flächeninhalt der abgebildeten Figur:
graphik