Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    P und P´ sind symmetrisch bzgl. der Achse a, wenn ihre Verbindungsstrecke [PP´] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische...
    • ...Strecken sind gleich lang
    • ...Winkel sind gleich groß
    • ...Figuren haben umgekehrten Umlaufsinn, z.B. ABC und C´B´A´
    • ...Geraden sind parallel oder schneiden sich auf der Achse

Kreuze richtig an.

graphik
Sind die beiden Punkte bzgl. der Achse symmetrisch? Entscheide nach Augenmaß:
ja, denn beide Punkte haben denselben Abstand zur Achse
ja, denn die Verbindungsstrecke der Punkte wird von der Achse halbiert
nein
  • Nebenrechnung

Zugriff ab Level 2 nur mit Benutzerkonto

Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen

Tipp

Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen anderen Aufgabentyp wählen. Oder ein paar ausgewählte Schritt-für-Schritt-Aufgaben lösen, die wir für dich zusammengestellt haben.
Eine Symmetrieachse erkennt man daran: Würde man die Figur entlang der Achse falten, wären die aufeinandergelegten Figurenhälften deckungsgleich.

Präziser: Jede Verbindungsstrecken zwischen Punkt und Spiegelpunkt steht senkrecht zur Achse und wird von ihr halbiert.

Eine Figur kann auch mehrere Symmetrieachsen besitzen. Figuren mit mindestens einer Symmetrieachse nennt man achsensymmetrisch.

P und P´ sind symmetrisch bzgl. der Achse a, wenn ihre Verbindungsstrecke [PP´] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische...
  • ...Strecken sind gleich lang
  • ...Winkel sind gleich groß
  • ...Figuren haben umgekehrten Umlaufsinn, z.B. ABC und C´B´A´
  • ...Geraden sind parallel oder schneiden sich auf der Achse