Hilfe
  • Bei einer ganzrationalen Funktion entscheidet die größte x-Potenz mitsamt ihrem Koeffizienten, von wo der Graph kommt und wohin er geht:
    • Exponent ungerade, Koeffizient positiv (z.B. 5x³): von links unten nach rechts oben
    • Exponent ungerade, Koeffizient negativ (z.B. -2x): von links oben nach rechts unten
    • Exponent gerade, Koeffizient positiv (z.B. ½x²): von links oben nach rechts oben
    • Exponent gerade, Koeffizient negativ (z.B. -x²): von links unten nach rechts unten

Wie verläuft der Graph?

  • f(x)
    =
    x
    3
    +
    3x
    5
    +
    10x
    2
    Von links
     
       
     
    oben
     
       
     
    unten
    nach rechts
     
       
     
    oben
     
       
     
    unten
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Um den Grad anzugeben, schaut man auf die höchste x-Potenz (sofern der Term als Summe von x-Potenzen mit jeweiligem Koeffizient vorliegt).

Liegt der Term faktorisiert vor, muss man pro Faktor die größte x-Potenz heranziehen. Es ist (für die Bestimmung des Grads) nicht erforderlich, alle Klammern auszumultiplizieren.

Beispiel
Bestimme den Grad von
a) 
f
 
x
=
1
x
+
4x
5
1
2
 
x
3
b) 
f
 
x
=
1
x
2
·
1
+
2x
3x
3
Der Term f(x) einer ganzrationalen Funktion (synonym: Polynomfunktion) besteht aus einer Summe von x-Potenzen, denen reelle Faktoren vorangestellt sind, wie z.B.


½ x³ + 3x² − 5

Die höchste x-Potenz bestimmt den Grad, im Beispiel oben beträgt dieser 3. Die vor den x-Potenzen stehenden reellen Faktoren (½; 3; -5) nennt man Koeffizienten. Taucht eine x-Potenz gar nicht auf, so ist der entsprechende Koeffizient 0.

Beispiel
f(x)
=
4
7
x
2
+
2
 
x
4
Gib den Grad und die auftretenden Koeffizienten ai an (mit ai ist der Faktor vor xi gemeint)
Ein ganzrationaler Term kann evtl. in faktorisierter Form vorliegen, d.h. als Produkt von mehreren Teiltermen (jeder davon ebenfalls ganzrational). Um die übliche Darstellung zu erhalten (Summe von x-Potenzen mit jeweiligem Koeffizient), muss man die Klammern ausmultiplizieren. Dabei ist das Distributivgesetz ("jeder mit jedem") anzuwenden.
Beispiel
f
 
x
=
1
2
 
x
3
·
x
+
1
3
2
. Multipliziere aus und gibt die Koeffizienten 
a
0
, a
1
, a
2
 usw. an, die vor 
x
0
, x
1
, x
2
 usw. stehen.
Bei einer ganzrationalen Funktion entscheidet die größte x-Potenz mitsamt ihrem Koeffizienten, von wo der Graph kommt und wohin er geht:
  • Exponent ungerade, Koeffizient positiv (z.B. 5x³): von links unten nach rechts oben
  • Exponent ungerade, Koeffizient negativ (z.B. -2x): von links oben nach rechts unten
  • Exponent gerade, Koeffizient positiv (z.B. ½x²): von links oben nach rechts oben
  • Exponent gerade, Koeffizient negativ (z.B. -x²): von links unten nach rechts unten
Bei einer ganzrationalen Funktion entscheiden die Summanden mit den niedrigsten x-Potenzen, wie sich die Funktion in der Nähe der y-Achse verhält.
Beispiel
Wie verhalten sich die Funktionen in der Umgebung der y-Achse?
f(x)
=
x
4
5x
2
+
1
2
 
x
2
g(x)
=
2x
5
x
4
x
2
Jede Nullstelle einer ganzrationalen Funktion besitzt eine bestimmte Vielfachheit.

Ist a eine Nullstelle, so kann f(x) als Produkt mit Faktor x − a geschrieben werden. Kommt x − a genau n mal als Faktor vor (also "hoch n"), so nennt man a eine n-fache Nullstelle.

Beispiel
Bestimme jeweils die Nullstellen und ihre Vielfachheiten:
f(x)
=
x
1
2
·
x
+
2
g(x)
=
x
2
+
1
·
x
2
4
h(x)
=
x
5
2
+
2
Die Vielfachheit einer Nullstelle wirkt sich auf das Verhalten des Graphen wie folgt aus
  • ungerade Vielfachheit (also einfach, dreifach, fünffach usw.) bedeutet, dass der Graph die x-Achse an der betreffenden Stelle schneidet ("Nullstelle mit Vorzeichenwechsel").
  • gerade Vielfachheit (also doppelt, vierfach, sechsfach usw.) bedeutet, dass der Graph die x-Achse an der betreffenden Stelle berührt ("Nullstelle ohne Vorzeichenwechsel").
Ein quadratischer Term (q · x² + r · x + s) kann evtl. als Produkt von zwei linearen Termen (linear ist z.B. x + 2) geschrieben werden. Dies hängt von den Lösungen der entsprechenden Nullgleichung (Lösungsformel!) ab:
  • Zwei unterschiedliche Lösungen a und b: der Term zerfällt in q · (x − a) · (x − b).

  • Eine Lösung a: der Term zerfällt in q · (x − a)².

  • Keine Lösung ("Minus unter der Wurzel"): der Term ist nicht zerlegbar.
Beispiel
Zerlege, falls möglich, in Linearfaktoren:
a
 
   
 
2x
2
+
3x
+
2
b
 
   
 
3x
2
+
x
5
Polynomdivision funktioniert ähnlich wie die schriftliche Division, die du bereits aus der Grundschule kennst. Wenn man ein Polynom vom Grad n durch ein Polynom vom Grad m<n teilt, ist das Ergebnis ein Polynom vom Grad n−m.
Beispiel
1
2
 
x
3
4
:
x
2
=
?
Polynome (d.h. ganzrationale Terme) vom Grad 3 oder höher lassen sich evtl. faktorisieren (also in ein Produkt aus mehreren Faktoren zerlegen), indem man
  • eine Nullstelle a errät und dann mittels Polynomdivision durch (x − a) teilt.
  • x oder eine höhere Potenz von x (z.B. x³) ausklammert. Das ist aber nur sinnvoll, wenn das Polynom keine additive Konstante aufweist, wie z.B. bei x³ - 4x² + 3x.
  • eine binomische Formel anwendet.
Ein quadratischer Faktor kann mit Hilfe der Mitternachtsformel evtl. weiter zerlegt werden. Eine ganzrationale Funktion vom Grad n hat höchstens n Nullstellen und zerfällt damit in höchstens n lineare Faktoren.