Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Ein Bruchterm lässt sich kürzen, wenn Zähler und Nenner (als Produkt dargestellt) in einem Faktor übereinstimmen. Das setzt, wie schon gesagt, Produkte auf beiden Seiten des Bruchstrichs voraus. Aus Summen oder Differenzen heraus darf nicht gekürzt werden!
Die Aufgaben aus diesem Level gehen über den Lehrplan hinaus oder sind Zusatzaufgaben.

Kürze, wenn möglich:

1
+
a
a
+
2
=
 
2
3
 
     
 
 
1
2
 
     
 
 
1
2
+
a
 
     
 
weder noch
  • Nebenrechnung

Ein Bruchterm lässt sich kürzen, wenn Zähler und Nenner (als Produkt dargestellt) in einem Faktor übereinstimmen. Das setzt, wie schon gesagt, Produkte auf beiden Seiten des Bruchstrichs voraus. Aus Summen oder Differenzen heraus darf nicht gekürzt werden!
Beim Multiplizieren zweier Bruchterme müssen die Zähler und die Nenner jeweils miteinander multipliziert werden. Beim Dividieren muss muss mit dem Kehrbruchterm (d.h. Zähler und Nenner vertauscht) des Divisors multipliziert werden.
Sofern die Nenner gleich sind, können die Zählerterme addiert bzw. subtrahiert werden.
Sofern die Nenner nicht gleich sind, müssen bei Addition und Subtraktion zunächst die Bruchterme gleichnamig gemacht werden. Dies geschieht durch Erweitern, manchmal in Kombination mit Kürzen.