Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Distributivgesetz:

    a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

    (a + b ) : c = a : c + b : c

    Statt + kann man auch − einsetzen, d.h. das Disriputivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Multipliziere aus und vereinfache.

7
·
23
11d
=
  • Nebenrechnung

Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Disriputivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel 1
Multipliziere aus und gib gekürzt an:
2
9
·
3
5
6c
=
?
Beispiel 2
Multipliziere aus und gib gekürzt an:
1
3
·
2a
+
12b
+
3c
=
?
Beispiel 3
Multipliziere aus und gib gekürzt an:
5
3
 
ab
1
3
 
a
2
3b
·
6
5
=
?
Beim Multiplizieren zweier Summen muss jeder Summand der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert werden (ergibt sich aus dem Distributivgesetz):

(a + b) · (c + d) = ac + ad + bc + bd

Beispiel
Multipliziere aus und vereinfache:
2
5
 
uv
2
3
·
15u
2
+
1
uv