Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • a/b von einer bestimmten Größe erhält man, indem man die Größe durch b teilt ("der b-te Teil") und davon a mal so viel nimmt.

    Das Ergebnis ist dann ein sog. Bruchteil von der Ausgangsgröße.

Berechne den Bruchteil.

30% von 1,5 h
=
min
  • Nebenrechnung

Lernvideo
Prozentrechnung (Teil 1)
Lernvideo
Prozentrechnung (Teil 2)

a/b von einer bestimmten Größe erhält man, indem man die Größe durch b teilt ("der b-te Teil") und davon a mal so viel nimmt.

Das Ergebnis ist dann ein sog. Bruchteil von der Ausgangsgröße.

Beispiel
35% von 50 kg = ?
Bei jeder Prozentrechnung werden zwei Größen, der Grundwert (GW) und der Prozentwert (PW) miteinander verglichen. Der Prozentsatz (PS) drückt aus, wie groß der Prozentwert im Vergleich zum Grundwert ist.
Der Grundwert entspricht immer 100%. "Mehr als 100%" heißt somit "mehr als der Grundwert". "Weniger als 100%" heißt "weniger als der Grundwert".

Je nach Prozensatz (PS) ist der Prozentwert (PW) also größer (>100%), kleiner (<100%) oder genauso groß (=100%) wie der Grundwert (GW).

x% von einer bestimmten Größe erhält man, indem man die Größe mit x% multipliziert. Das Ergebnis nennt man Prozentwert oder auch Bruchteil (vom Grundwert bzw. der Ausgangsgröße).
Beispiel
Berechne 83% von 87 €.
Jedem Bruchteil (Zahl mit Einheit) kann ein Anteil (ausgedrückt als Bruch oder in Prozent) zugeordnet werden. Geht man z.B. von 600 g aus, so entspricht
  • der Bruchteil 300 g dem Anteil 1/2 bzw. 50%
  • der Bruchteil 150 g dem Anteil 1/4 bzw. 25%
  • der Bruchteil 60 g dem Anteil 1/10 bzw. 10%
Man erhält den Anteil, indem man den Bruchteil durch die Ausgangsgröße teilt. Durch Kürzen und Erweitern lässt sich evtl. ein Bruch mit Nenner 100 herstellen, so dass der Anteil in % ausgedrückt werden kann.
Beispiel 1
33 min = ?% von 2,5 h
Beispiel 2
(a) In einer Teigmasse von 1,5 kg sind 250 g Zucker enthalten; das ist ein Anteil von ?%.
(b) Früher standen 12 Bäume im Garten, jetzt 18. Im Vergleich zu vorher sind das ?%.
Ist der Grundwert gesucht, so wandle den Prozentsatz in einen Bruch oder Dezimalbruch um und teile dann den Prozenwert durch diese Zahl.
Beispiel
120% von ? €
=
350 €
Jede Veränderung (Zunahme oder Abnahme) einer Größe kann in Prozent ausgedrückt werden. Die ursprüngliche Größe entspricht dabei dem Grundwert, die jetzige dem Prozentwert.
Beispiel
Ordne jeweils richtig zu: Grundwert, Prozentsatz und Prozentwert.
(1) Arnie misst seinen Bizepsumfang und stellt fest, dass er nach 3 Monaten hartem Training auf 115% angewachsen ist. Wie groß war er vor drei Monaten, wenn er jetzt 39 cm beträgt?
(2) In einem bestimmten Landkreis betrug die Übertrittsquote ans Gymnasium in den 70iger Jahren 30%. Wie hoch ist sie inzwischen, wenn die Übertrittsquote seitdem um 200% gestiegen ist?
Auch Prozentsätze können sich verändern. Die Veränderung kann dann ebenfalls in Prozent ausgedrückt werden. Der ursprüngliche Prozentsatz ist dann der Grundwert, der neue Prozentsatz der Prozentwert.

Vorsicht: Verwechsle nicht % und ProzentPUNKTE (= Differenz zwischen beiden Prozentsätzen)!

Beispiel
Eine Partei hat bei der letzten Wahl 10% und bei dieser 15% der abgegebenen Stimmen erzielt. Um wie viel Prozent hat sie ihren Stimmanteil verbessern können?
Achte darauf, ob der Prozentsatz die Differenz zwischen zwei Größen ausdrückt oder ob es darum geht, wie groß die eine Größe im Vergleich zur anderen ist. Eine Differenz ist z.B. bei folgenden Formulierungen gemeint:
  • "um 30% gestiegen"; der neue Wert beträgt dann 130% (= 100% + 30%) gegenüber dem alten, ist also 1,3 mal so groß
  • "Abnahme um 20%"; der neue Wert beträgt dann 80% (= 100% − 20%) gegenüber dem alten, ist also 0,8 mal so groß
  • "15% mehr als"; der größere Wert beträgt dann 115% gegenüber dem kleineren, ist also 1,15 mal so groß
Beispiel
Klassenstärke heuer: 30 SchülerInnen; letztes Jahr: 28 SchülerInnen; berechne den Zuwachs (= Differenz) in Prozent.