Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Überlege für jede Auswahlstufe, welche Möglichkeiten zur Wahl stehen. Prüfe auch für jeden Ast des Baumdiagramms, ob die angegebenen Möglichkeiten in diesem Fall wirklich bestehen. Berechne P(E) mithilfe der Laplace-Formel.
  • Setzt sich ein Zufallsexperiment aus mehreren Stufen zusammen, ist ein Baumdiagramm oft eine hilfreiche Darstellung. Wenn jeder Pfad des Baumdiagramms mit der gleichen Wahrscheinlichkeit eintritt, kann man die Wahrscheinlichkeit eines Ereignisses mit der Laplace-Formel berechnen.

Welches der abgebildeten Baumdiagramme beschreibt die Situation richtig? Wie groß ist die Wahrscheinlichkeit von E?

Die drei Freundinnen Rosa, Sara und Tara haben drei benachbarte Plätze in einer Kinovorstellung reserviert. Jede von ihnen erhält an der Kinokasse zufällig eine der drei Platzkarten. Rosa interessiert sich für die Wahrscheinlichkeit des Ereignisses E: „Rosa und Tara sitzen nebeneinander.“
Passendes Baumdiagramm:
 
graphik
 
graphik
 
graphik
 
graphik
Gesuchte Wahrscheinlichkeit: 
P(E)
=
  • Nebenrechnung
Setzt sich ein Zufallsexperiment aus mehreren Stufen zusammen, ist ein Baumdiagramm oft eine hilfreiche Darstellung. Wenn jeder Pfad des Baumdiagramms mit der gleichen Wahrscheinlichkeit eintritt, kann man die Wahrscheinlichkeit eines Ereignisses mit der Laplace-Formel berechnen.
Beispiel
Ein Gymnasium bietet am Tag der offenen Tür für Grundschüler verschiedene Schnupperkurse an. Zunächst werden jedem Teilnehmer zwei der drei Kernfächer Mathematik, Deutsch oder Englisch zugelost. Anschließend wird jeder Teilnehmer zufällig in einen Musik- oder Kunst-Kurs eingeteilt. Miriams Lieblingsfächer sind Englisch und Kunst. Sie interessiert sich für die Wahrscheinlichkeit des Ereignisses E: "Sie wird mindestens in einen der Englisch- oder Kunst-Kurse eingeteilt."
Zeichne ein Baumdiagramm mit allen möglichen Fällen. Bestimme anschließend P(E).
Bei einem mehrstufigen Zufallsexperiment erhält man die Wahrscheinlichkeit eines Ergebnisses, indem man die Wahrscheinlichkeiten des zugehörigen Pfades im Baumdiagramm multipliziert.
Beispiele für Ereignis und Gegenereignis:

Ereignis A: Mindestens ein Schuss geht daneben.
Gegenereignis A: Kein Schuss geht daneben.

Ereignis B: Höchstens 9 von 10 gezogenen Kugeln sind rot.
Gegenereignis B: Alle gezogenen Kugeln sind rot.

Die Wahrscheinlichkeiten von Ereignis und Gegenereignis ergänzen sich jeweils zu 100%

Bei mehrstufigen Zufallsexperimenten kann ein Ereignis E mehrere Pfade im Baumdiagramm umfassen. Um die Wahrscheinlichkeit von E zu bestimmen, muss man die Wahrscheinlichkeiten dieser Pfade addieren.