Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Umwandlung in die nächstgrößere Längeneinheit (mm → cm → dm → m):
    Kommaverschiebung um eine Stelle nach links
  • Ein Kreis mit Radius r hat den
    • Durchmesser d = 2r
    • Umfang u = d·π = 2r·π
    • Flächeninhalt A = r²·π

Berechne (verwende dabei für π den Näherungswert 3,14) den Umfang eines Kreises mit... Ergebnis(se) falls erforderlich auf die 1. Dezimalstelle gerundet eingeben!

...Radius 5 cm.
u ≈ dm (beachte die Einheit!)
  • Nebenrechnung
Lernvideo
Kreisumfang und Kreisfläche

Ein Kreis mit Radius r hat den
  • Durchmesser d = 2r
  • Umfang u = d·π = 2r·π
  • Flächeninhalt A = r²·π
Verdoppelt man den Radius eines Kreises, so verdoppeln sich auch sein Durchmesser und sein Umfang, dagegen vervierfacht sich seine Fläche (2² = 4).

Verdreifacht man den Radius eines Kreises, so verdreifachen sich auch sein Durchmesser und sein Umfang, dagegen verneunfacht sich seine Fläche (3² = 9)

Ver-n-fachung des Radius bedeutet
Ver-n-fachung des Umfangs und
Ver-n²-fachung des Flächeninhalts.

Radius und Durchmesser sind damit zueinander proportional, Radius (bzw. Umfang) und Flächeninhalt dagegen nicht.

Beispiel
Gegeben sind zwei Kreise k1 und k2, von denen man weiß:
6u
1
=
u
2
Vervollständige damit die Gleichungen
r
1
=
?r
2
A
1
=
?A
2
Fläche und Bogenlänge eines Keissektors ("Kuchenstücks") können als Bruchteil der gesamten Kreisfläche bzw. des gesamten Kreisumfangs berechnet werden. Ist α der Mittelpunktswinkel des Sektors, so gilt

ASektor = α/360° · AKreis

b (Bogenlänge) = α/360° · uKreis

Beispiel
Berechne Fläche und Bogenlänge b des Kreissektors mit Mittelpunktswinkel 250° für einen Kreis mit Radius 3cm.
graphik
Bogen und Fläche des Kreissektors verhalten sich zu Umfang und Fläche des Gesamtkreises wie der Mittelpunktswinkel α zu 360°, d.h.

b / u = ASektor / AKreis = α / 360°

Verwende die passende Gleichung - je nachdem, welche Größen gegeben und gesucht sind - um Radius, Bogenlänge, Fläche von einem Kreis bzw. Kreissektor zu bestimmen.
Figuren, in denen unterschiedliche Kreise, Halbkreise und Viertelkreise vorkommen, lassen sich sowohl vom Umfang als auch vom Flächeninhalt her berechnen, indem man die Einzelumfänge bzw. -flächen addiert.
Beispiel
Berechne Umfang und Flächeninhalt der abgebildeten Figur:
graphik