Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Eine quadratische Funktion hat die allgemeine Funktionsgleichung y=ax²+bx+c. Gibt man zwei Punkte auf dem Schaubild der Funktion und einen der Parameterwerte a, b oder c vor, lässt sich die Funktionsgleichung bestimmen. Durch das Einsetzen der zwei Punkte und des Parameterwerts in die Funktionsgleichung y = ax² + bx + c erhält man ein Gleichungssystem mit zwei Unbekannten. Dieses kann mittels Einsetz- oder Subtraktionsverfahren gelöst werden.

Durch zwei Punkte auf der Parabel und einen Parameterwert wird eine quadratische Funktion y=ax²+bx+c festgelegt. Bestimme die übrigen Parameterwerte und gib schließlich die Funktionsgleichung an. Brüche sind in der Form "a/b", Variablenpotenzen durch "a^n" einzugeben.

A
 
2
;
15
;
 
B
 
1
;
9
;
 
c
=
1
a
=
b
=
y
=
  • Nebenrechnung

Eine quadratische Funktion hat die allgemeine Funktionsgleichung y=ax²+bx+c. Gibt man zwei Punkte auf dem Schaubild der Funktion und einen der Parameterwerte a, b oder c vor, lässt sich die Funktionsgleichung bestimmen. Durch das Einsetzen der zwei Punkte und des Parameterwerts in die Funktionsgleichung y = ax² + bx + c erhält man ein Gleichungssystem mit zwei Unbekannten. Dieses kann mittels Einsetz- oder Subtraktionsverfahren gelöst werden.
Eine Parabel lässt sich durch drei geeignete Punkte eindeutig festlegen. Durch das Einsetzen der drei Punkte in die Funktionsgleichung y = ax² + bx + c erhält man ein Gleichungssystem mit den drei Unbekannten a, b und c. Dieses kann mittels Einsetz- oder Subtraktionsverfahren gelöst werden.
Beispiel
Ermittle die Gleichung der Parabel durch folgende Punkte:
A
 
3
;
2
 
,
 
B
 
3
;
8
 
,
 
C
 
1
;
1
1
3