Spezialfall f(x) = 0: Hier geht es um die gemeinsamen Punkte von Gf mit der x-Achse.
Eine Lösung der Gleichung f(x) = h(x) kann als Schnitt- oder Berührstelle der beiden Graphen Gf und Gh interpretiert werden. Eine Lösung der Gleichung f(x) = 0 kann als Schnitt- oder Berührstelle von Gf mit der x-Achse interpretiert werden.
Sofern die Gleichung quadratisch ist, kann man aus dem Vorzeichen der Diskriminante D auf die Anzahl der gemeinsamen Punkte schließen und umgekehrt:
Auch bei komplizierteren Bruchgleichungen geht man so vor, dass man die Gleichung zunächst nennerfrei macht. Das gelingt, indem man beide Seiten mit dem Produkt aller auftretenden Nennerterme bzw. mit ihrem gemeinsamen Vielfachen ("Hauptnenner") multipliziert.
Die Graphen zweier quadratischer Funktionen (Parabeln) oder einer quadratischen und einer linearer Funktion (Parabel und Gerade) f und g können sich zweimal schneiden, einmal berühren oder auch keine gemeinsamen Punkte aufweisen. Um das herauszufinden, setzt man beide Funktionsterme gleich, also f(x) = g(x), und bringt die Gleichung in die Normalform x² + px + q = 0. Mit Hilfe der Diskriminante D = (p/2)² − q bekommt man die Antwort: