Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Wenn f(x) = a · xm mit a ∈ ℝ und m ∈ ℤ \ {0}, dann ist
    f (x) = a · m · x m−1.

    Spezialfälle:

    • f(x) = a · x ⇒ f ´ (x) = a
    • f(x) = a ⇒ f ´ (x) = 0

Bestimme den Ableitungsterm. Variablenpotenzen sind in der Form "a^n" einzutragen.

f
 
x
=
3
 
x
9
'
 
x
=
  • Nebenrechnung

Wenn f(x) = a · xm mit a ∈ ℝ und m ∈ ℤ \ {0}, dann ist
f (x) = a · m · x m−1.

Spezialfälle:

  • f(x) = a · x ⇒ f ´ (x) = a
  • f(x) = a ⇒ f ´ (x) = 0

Beispiel
f
 
x
=
1
2x
10
f ´
 
x
=
?
Liegt eine gebrochen rationale Funktion vor, deren Nenner nur eine x-Potenz enthält, so lässt sich der Funktionsterm umformen in eine Reihe von x-Potenzen. Die Ableitung kann dann ganz einfach mithilfe der Regel für Potenzfunktionen gebildet werden.
Beispiel
f
 
x
=
2x
7
3x
+
5
0,5x
 
x
=
?
Wenn f(x) = a · xr mit a ∈ ℝ und r ∈ ℚ \ {0}, dann ist
f (x) = a · r · x r−1.
Beispiel 1
f(x)
=
4
x
9
6
f´(x)
=
?
Beispiel 2
f
 
x
=
1
4
·
x
1
3
+
7x
2
+
2
3
f '
 
x
=
?
Beispiel 3
f
 
x
=
3
 
x
5
 
3
x
2
+
7
x
2
f '
 
x
=
?