Hilfe
  • Hilfe speziell zu dieser Aufgabe
    Wie groß ist der Bestand zum Zeitpunkt t=2 min? Nach wie vielen Minuten halbiert sich dieser Bestand?
  • Allgemeine Hilfe zu diesem Level
    Verdoppelungszeit tD nennt man die (bei exponentiellem Wachstum konstante) Zeit, in der sich der Bestand verdoppelt.

    Halbwertszeit tH nennt man die (bei exponentieller Abnahme konstante) Zeit, in der sich der Bestand halbiert.

Lies möglichst genau ab.

  • graphik
    Halbwertszeit 
    t
    H
     
         
    2,0 min
         
    2,2 min
         
    2,4 min
         
    2,6 min
    Hinweis: es ist Absicht, dass der Anfangsbestand nicht abgelesen werden kann; man kann die Aufgabe trotzdem lösen.
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lernvideo
y=e^x | Graph verschieben und spiegeln

Verdoppelungszeit tD nennt man die (bei exponentiellem Wachstum konstante) Zeit, in der sich der Bestand verdoppelt.

Halbwertszeit tH nennt man die (bei exponentieller Abnahme konstante) Zeit, in der sich der Bestand halbiert.

Funktionen mit der Gleichung f(x) = b · ax heißen Exponentialfunktionen. Dabei ist
  • a > 0 der Wachstumsfaktor und
  • b = f(0) der Anfangsbestand
Beispiel 1
Gegeben ist der Graph einer Exponentialfunktion mit der Gleichung
 
y
=
b
·
a
x
 
. Bestimme an und b.
graphik
Beispiel 2
Schreibe in der Form
 
f(x)
=
b
·
a
x
 
:
f(x)
=
1
5
6
·
2
1
x
Der Graph einer Exponentialfunktion mit der Gleichung y = b · ax hat stets die x-Achse als Asymptote und schneidet die y-Achse in (0|b).

Im Fall b > 0

  • steigt der Graph für a > 1 ("ins Unendliche")
  • fällt der Graph für 0 < a < 1

Im Fall b < 0 (Spiegelung an der x-Achse gegenüber dem positiven Betrag von b) verhält es sich genau umgekehrt.

Beispiel
Für welche Werte von a
(a) fällt der Graph von    f(x)
=
a
+
1
·
x
2
 
   streng monoton?
(b) steigt der Graph von    f(x)
=
2
·
a
x
 
   streng monoton?
h ( x ) = Gh geht aus Gf hervor durch
f ( x + a ) Verschiebung um |a| Einheiten nach rechts (a < 0) bzw. links (a > 0)
f ( x ) + a Verschiebung um |a| Einheiten nach oben (a > 0) bzw. unten (a < 0)
a · f ( x ), a > 0 Streckung (a > 1) bzw. Stauchung (a < 1) in y-Richtung
− f ( x ) Spiegelung an der x-Achse
f ( a · x ), a > 0 Streckung mit Faktor 1/a in x-Richtung
f ( −x ) Spiegelung an der y-Achse
Beispiel
f
 
x
=
1
3
·
2
x
1,5
h
 
x
=
2
x
3
+
1
Welche Verschiebung(en)/Streckung(en)/Spiegelung(en) sind am Graphen von f durchzuführen, um den Graphen von h zu erhalten?

Regeln zur Transformation von Graphen

Der Graf einer Funktion f wird
  • ... an der x-Achse gespiegelt: Minus vor den Term, d.h. g(x) = - f(x)
  • ... an der y-Achse gespiegelt : x durch (-x) ersetzen, d.h. g(x) = f(-x)
  • ... um b in y-Richtung verschoben: b zum Term addieren, d.h. g(x) = f(x) +b

Asymptote bei Exponentialfunktionen vom Typ f(x) = a ekx+b
  • Die Gleichung der Asymptote lautet y = b.
  • Wenn k positiv ist, schmiegt sich der Graph von f nach links an die Asymptote.
  • Wenn k negativ ist, schmiegt sich der Graph von f nach rechts an die Asymptote.