Hilfe
  • Um zu überprüfen, ob ein Punkt (a|b) über, auf oder unter dem Graphen einer Funktion liegt, setzt man a in den Funktionsterm f(x) ein. Der Punkt liegt
    • über dem Graphen, wenn b > f(a)
    • auf dem Graphen, wenn b = f(a)
    • unter dem Graphen, wenn b < f(a)
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Prüfe rechnerisch ob die Punkte über, auf oder unter der Geraden liegen.

  • g
    :
     
     
    y
    =
    1
    2
     
    x
    1
    4
    A
     
    5
     
    |
     
    2,5
    ;
     
     
     
     
    B
     
    9,5
     
    |
     
    4,5
    A liegt
     
     
    der Geraden g.
    B liegt
     
     
    der Geraden g.
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

Eine lineare Funktion mit der Gleichung y = m·x + t ergibt graphisch immer eine Gerade. Dabei ist m die Steigung (zeigt an, wie stark die Gerade steigt oder fällt) und t der y-Achsenabschnitt (zeigt an, wo die Gerade die y-Achse schneidet) der Gerade.

  • Ist m positiv, so steigt die Gerade (von links nach rechts)
  • Ist m negativ, so fällt die Gerade (von links nach rechts)
  • Ist m = 0, so verläuft die Gerade parallel zur x-Achse
Sind zwei Geraden parallel, so besitzen sie dieselbe Steigung.

Sind zwei Geraden g und h zueiandner senkrecht (orthogonal), so erfüllen ihre Steigungen die Gleichung mg · mh = −1.

Um zu überprüfen, ob ein Punkt P(x | y) auf der Geraden liegt, setzt man den x-Wert in den Funktionsterm ein und berechnet den Termwert. Ist das Ergebnis der y-Wert des Punktes, dann liegt der Punkt auf der Geraden.
Beispiel
Liegt der Punkt P auf der Geraden g?
Gerade:
 
y
=
2
·
x
+
5
Punkt:
 
P
 
3
 
|
 
10
Um zu überprüfen, ob ein Punkt (a|b) über, auf oder unter dem Graphen einer Funktion liegt, setzt man a in den Funktionsterm f(x) ein. Der Punkt liegt
  • über dem Graphen, wenn b > f(a)
  • auf dem Graphen, wenn b = f(a)
  • unter dem Graphen, wenn b < f(a)
Beispiel
g: 
y
=
1
3
 
x
+
2
3
;        
A
 
2
 
|
 
0
;   
B
 
4
 
|
 
2,5
;   
C
 
8
 
|
 
3
Gib jeweils an, ob der der Punkt über, auf oder unter der Geraden liegt.
Wenn von einem Punkt auf der Geraden nur die x-Koordinate bekannt ist, erhält man die y-Koordinate, indem man die x-Koordinate in den Funktionsterm einsetzt und den Wert des Funktionsterms berechnet. Das Ergebnis ist die y-Koordinate.

Wenn von einem Punkt auf der Geraden nur die y-Koordinate bekannt ist, erhält man die x-Koordinate, indem man den Funktionsterm gleich der y-Koordinate setzt und die entstehende Gleichung nach x auflöst. Das Ergebnis ist die x-Koordinate.
Beispiel
Die beiden Punkte liegen auf der Geraden. Berechne die fehlenden Werte.
Gerade:
 
y
=
3
·
x
1
Punkte:
P
 
2
 
|
 
?
Q
 
?
 
|
 
14
Ist eine Gerade g durch ihre Steigung m und einen beliebigen Punkt P ∈ g gegeben, so kann man den y-Achsenabschnitt t leicht bestimmen:
  1. Ausgangspunkt ist die Geradengleichung y = m·x + t (für m setze die bekannte Steigung ein).
  2. Setze dann den Punkt P ein, d.h. ersetze x und y durch die Koordinaten von P.
  3. Löse schließlich die Gleichung nach dem gesuchten t auf.
Beispiel
Wo schneidet die Gerade, die durch 
m
=
1,6
 und P(2|−0,5) gegeben ist, die y-Achse?
Ist eine Gerade g durch ihren y-Achsenabschnitt t und einen beliebigen Punkt P ∈ g gegeben, so kann man die Steigung m leicht bestimmen:
  1. Ausgangspunkt ist die Geradengleichung y = m·x + t (für t setze den bekannten y-Achsenabschnitt ein).
  2. Setze dann den Punkt P ein, d.h. ersetze x und y durch die Koordinaten von P.
  3. Löse schließlich die Gleichung nach dem gesuchten m auf.
Beispiel
Welche Steigung hat die Gerade, die durch t = 2,5 und P(2 | -0,5) gegeben ist?
Wie lautet die Geradengleichung?
Ist eine Gerade g durch zwei Punkte A(x1|y1) und B(x2|y2) gegeben, so kann man ihre Steigung m so berechnen:
  1. Berechne die Differenz der y-Werte beider Punkte, also Δy = y2 − y1.
  2. Berechne ebenso die Differenz der x-Werte beider Punkte, also Δx = x2 − x1.
  3. Der Bruch Δy / Δx ergibt die Steigung m.
Beispiel
Ermittle die Steigung der Gerade, die durch die Punkte (-1,5 | 2,5) und (0 | -3) geht.

Ist eine Gerade durch zwei Punkte gegeben, so geht man wie folgt vor, um ihre Gleichung, sprich m und t, zu ermitteln:

  1. Bestimme zunächst die Steigung m = Δy / Δx .
  2. Setze dann in die Gleichung y = m·x + t einen der beiden Punkte ein und löse die Gleichung nach t auf.
Beispiel
Ermittle die Gleichung der Geraden g, die durch die Punkte P1(−3|2) und P2(5|−4) geht.
Folgende Ausnahmefälle hinsichtlich der Lage zweier Geraden sind zu beachten:
  • Beide Geraden sind (echt) parallel, haben also keinen Schnittpunkt. Das passiert, wenn beide Geraden dieselbe Steigung, aber unterschiedliche y-Achsenabschnitte haben. In dem Fall lässt sich die Gleichung g(x) = h(x) nicht lösen, es entsteht eine falsche Aussage wie z.B. 1=0.
  • Beide Geraden sind identisch, zu erkennen an derselben Steigung und demselben y-Achsenabschnitt. Die Gleichung g(x) = h(x) beschreibt in diesem Fall eine wahre Aussage wie z.B. 0 = 0, hat also unendlich viele Lösungen.
  • Eine Geraden ist senkrecht, z.B. x = 5; dann kann die andere Gerade sie, wenn überhaupt, nur bei x = 5 schneiden.
  • Eine Geraden ist waagrecht, z.B. y = 5; dann kann die andere Gerade sie, wenn überhaupt, nur in (?|5) schneiden.
Beispiel
f: y
=
1
8
 
x
+
2
     
g: x
=
4
     
h: y
=
3
     
i: y
=
0,125x
Untersuche paarweise, wie die Geraden zueinander liegen und bestimme gegebenenfalls den Schnittpunkt.

Den Schnittpunkt zweier Geraden ermittelt man, indem man ihre Funktionsterme gleichsetzt:

  1. Setze g(x) = h(x) und löse diese Gleichung nach x auf.
  2. Setze den ermittelten x-Wert in g(x) oder h(x) ein, so erhältst du den y-Wert des Schnittpunkts.

Spezialfall: Den Schnittpunkt einer Gerade g mit der x-Achse (y = 0) ermittelt man durch g(x) = 0.

Beispiel
Bestimme durch Rechnung den Schnittpunkt der beiden Geraden g und h mit folgenden Gleichungen:
g
:
y
=
2,1
x
3
 
          
 
h
:
y
=
4
9
 
x
+
0,9