Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • f bzw Gf f ´ f ´´
    streng monoton zunehmend positiv
    streng monoton abnehmend negativ
    linksgekrümmt streng monoton zunehmend positiv
    rechtsgekrümmt streng monoton abnehmend negativ

Entscheide aufgrund des abgebildeten Graphen Gf. Pro Zeile ist mindestens eine Aussage anzukreuzen.

graphik
f
 
0
    
=
0
    
 
> 0
    
 
< 0
f ´
 
0
    
=
0
    
 
> 0
    
 
< 0
f ´´
 
x
 
< 0 für x ∈
    
 
]
 
2
3
 
3
 
;
 
2
3
 
3
 
[
     
 
     
 
+
  • Nebenrechnung
Lernvideo
Zweite Ableitung und Krümmung

f bzw Gf f ´ f ´´
streng monoton zunehmend positiv
streng monoton abnehmend negativ
linksgekrümmt streng monoton zunehmend positiv
rechtsgekrümmt streng monoton abnehmend negativ
Beispiel
Lies das jeweilige Vorzeichen von f(-1), f '(-1) und f ''(-1) ab. Gib jeweils ein möglichst großes Intervall an (geschätzt), in dem f, f ' bzw. f '' positiv ist.
graphik
Leitet man f ab, so erhält man f ´ (erste Ableitung von f).

Leitet man f ´ ab, so erhält man f ´´ (zweite Ableitung von f).

Um f ´´ bilden zu können, muss f zweimal differenzierbar sein.
Die Krümmungsintervalle einer zweimal differenzierbaren Funktion ermittelt man mit Hilfe einer Vorzeichenuntersuchung von f ´´. Bestimme dazu zunächst die Nullstellen von f ´´.
Beispiel
Bestimme das Krümmungsverhalten der Funktion
 
f
 
x
=
x
4
2x
3
9
2
 
x
2
+
2x
 
.
Stellen, an denen sich die Krümmung eines Graphen ändert, nennt man Wendepunkte. Sofern f zweimal differenzierbar ist, gilt der Zusammenhang:

Gf besitzt einen Wendepunkt an der Stelle x = a

f ´´ (a) = 0 und Vorzeichenwechsel von f ´´ bei x = a

Beispiel
Bestimme sämtliche Wendepunkte von Gf sowie die Gleichung(en) ihrer Wendetangente(n).
f
 
x
=
1
4
 
x
3
+
6x
2
45x
1

Sei a eine Nullstelle der ersten Ableitung, also f ´(a) = 0. Dann gilt:

f ´´ (a ) < 0 ⇒ relatives Maximum bei x = a

f ´´ (a ) > 0 ⇒ relatives Minimum bei x = a

Vorsicht: Aus f ´´ (a) = 0 folgt NICHT, dass kein relatives Extremum vorliegt. Überprüfe in diesem Fall f ´ auf Vorzeichenwechsel an der Nullstelle x = a. Zur Erinnerung:

VZW +/- von f ´ ⇔ relatives Maximum

VZW -/+ von f ´ ⇔ relatives Minimum

kein VZW von f´ ⇔ Terrassenpunkt