Ein Säulendiagramm enthält unterschiedlich hohe Säulen. Die Summe der Höhen entspricht der Summe der dargestellten Bruchteile.
Setzt sich ein Zufallsexperiment aus mehreren Stufen zusammen (z.B. drei mal hintereinander Würfeln oder sechs Kugeln hintereinander aus einer Urne ziehen) so lässt sich die Mächtigkeit der Ergebnismenge mit dem sogenannten Zählprinzip bestimmen. Hier ein Beispiel bei einem vierstufigen Experiment:
1. Stufe: 8 Möglichkeiten 2. Stufe: 7 Möglichkeiten 3. Stufe: 6 Möglichkeiten 4. Stufe: 5 Möglichkeiten Dann gibt es insgesamt 8⋅7·6·5 = 1680 Möglichkeiten.
Oft entstehen hierbei Produkte der Art n·(n-1)·(n-2)·...·2·1; dafür gibt es die abkürzende Schreibweise n! ("n-Fakultät").
PS · GW = PW
PS = Prozentsatz GW = Grundwert PW = Prozentwert
a · (b + c ) = a · b + a · c ("Klammer ausmultiplizieren")
(a + b ) : c = a : c + b : c
Statt + kann man auch − einsetzen, d.h. das Distributivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.
Nur gleichartige Produkte können durch Addition und Subtraktion zusammengefasst werden. Dabei werden die zugehörigen Zahlen addiert/subtrahiert ("Äpfel mit Äpfeln und Birnen mit Birnen").
A = ½ · (a + c) · h
Achte bei der Rechnung darauf, dass alle Größen in derselben Einheit angegeben sind (evtl. umwandeln!)