Hilfe
  • Die Ableitung f´ einer differenzierbaren Funktion f liefert für jede definierte Stelle x die lokale Änderungsrate (= Steigung des Graphen von f an dieser Stelle). Insbesondere zeigt das Vorzeichen von f´ an, ob f im betrachteten Intervall zunimmt oder abnimmt:

    f´(x) f bzw. Gf
    > 0 streng monoton zunehmend bzw. wachsend
    < 0 streng monoton abnehmend bzw. fallend
    = 0 waagrechte Tangente

    Achtung: die Tabelle ist von links nach rechts zu lesen, d.h. aus f´(x)>0 in einem bestimmten Intervall kann auf strenge Monotonie von f geschlossen werden - aber nicht umgekehrt. Wenn f in einem bestimmten Intervall streng monoton wächst, kann es dort durchaus einzelne Stellen geben, an denen die Ableitung gleich null ist (waagrechte Tangente).

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Schließe von f´ auf die größtmöglichen Monotonieintervalle der ganzrationalen Funktion f.

  • f '
     
    x
    =
    3
    ·
    x
    1
    ·
    x
    +
    2
    Streng monoton steigend für x∈
       
     
    ℝ   
     
    ]-∞;-2]   
     
    ]-∞;1]   
     
    [-2;1]   
     
    [-2;∞[   
     
    [1;∞[   
    Streng monoton fallend für x∈
       
     
    ℝ   
     
    ]-∞;-2]   
     
    ]-∞;1]   
     
    [-2;1]   
     
    [-2;∞[   
     
    [1;∞[   
    Bemerkung: die x-Werte -2 und 1 sind bei allen Intervallen bewusst eingeschlossen, da von "größtmöglichen" Intervallen die Rede ist. Obwohl die Ableitung an diesen Stellen Null ist, kommen sie für die gesuchten Intervalle grundsätzlich in Frage! Wenn dir das suspekt ist, so schau dir die ausführliche Begründung in dem Beispiel unter "Hilfe" an!
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Ist f in einer Umgebung von x0 differenzierbar und besitzt Gf an der Stelle x0 eine waagrechte Tangente, d.h. also f ´ (x0) = 0, so befindet sich dort entweder ein Hoch-, ein Tief- oder ein Terrassenpunkt. Was genau, verrät der Vorzeichenverlauf von f ´:
  • "−,0,+" bedeutet für Gf "fallend,waagrecht,steigend", also Tiefpunkt (relatives Minimum von f)
  • "+,0,−" bedeutet für Gf "steigend,waagrecht,fallend", also Hochpunkt (relatives Maximum von f)
  • "−,0,−" bedeutet für Gf "fallend,waagrecht,fallend", also Terrassenpunkt
  • "+,0,+" bedeutet für Gf "steigend,waagrecht,steigend", also ebenfalls Terrassenpunkt
Beispiel
Schließe aus der Vorzeichentabelle von f´ auf evtl. Hoch-, Tief- und Terrassenpunkte von Gf.
x <
0
< x <
3
< x
f ´
 
x
0
+
0
+

Die Ableitung f´ einer differenzierbaren Funktion f liefert für jede definierte Stelle x die lokale Änderungsrate (= Steigung des Graphen von f an dieser Stelle). Insbesondere zeigt das Vorzeichen von f´ an, ob f im betrachteten Intervall zunimmt oder abnimmt:

f´(x) f bzw. Gf
> 0 streng monoton zunehmend bzw. wachsend
< 0 streng monoton abnehmend bzw. fallend
= 0 waagrechte Tangente

Achtung: die Tabelle ist von links nach rechts zu lesen, d.h. aus f´(x)>0 in einem bestimmten Intervall kann auf strenge Monotonie von f geschlossen werden - aber nicht umgekehrt. Wenn f in einem bestimmten Intervall streng monoton wächst, kann es dort durchaus einzelne Stellen geben, an denen die Ableitung gleich null ist (waagrechte Tangente).

Beispiel
Bestimme die Monotonieintervalle der ganzrationalen Funktion f aufgrund der gegebenen ersten Ableitung.
f ´
 
x
=
1
3
·
x
3
·
x
+
5

Nicht differenzierbar an der Stelle x0 kann z.B. bedeuten, dass der Graph einen Knick aufweist (blau) oder an der Stelle x0 überhaupt nicht definiert ist (rot), wie hier für x0 = -3 illustriert. Im Fall "blau" existieren aber die einseitigen Grenzwerte des Differenzialquotienten ("einseitige Tangentensteigungen"), nämlich 0 (linksseitig) und -3/2 (rechtsseitig).

Sei T: y = mx + t die Tangente an Gf im Punkt P[x0|f(0)]. Dann gilt:

m = f ´ (x0)

Beispiel 1
f
 
x
=
x
3
+
2x
+
1
a) Bestimme die Tangente an Gf an der Stelle 
x
=
1.
b) Bestimme alle Tangenten an Gf, die parallel sind zu 
g: y
=
7
3
 
x
2.
Beispiel 2
Gegeben ist die Funktion f
 
x
=
2
x
 
x ≠ 0
 
.
Bestimme den Punkt Q des Graphen Gf, dessen Tangente durch
 
P
 
0
 
|
 
4
3
 
geht.
Beispiel
f
 
x
=
x
3
x
2
5x
3
Diskutiere hinsichtlich Symmetrie zum Koordinatensystem, Nullstellen, Verhalten im Unendlichen, Extremwerte und Monotonie und skizziere den Graphen.