Hilfe
  • Die Ableitung f´ einer differenzierbaren Funktion f liefert für jede definierte Stelle x die lokale Änderungsrate (= Steigung des Graphen von f an dieser Stelle). Insbesondere zeigt das Vorzeichen von f´ an, ob f im betrachteten Intervall zunimmt oder abnimmt:

    f´(x) f bzw. Gf
    > 0 streng monoton zunehmend bzw. wachsend
    < 0 streng monoton abnehmend bzw. fallend
    = 0 waagrechte Tangente

    Achtung: die Tabelle ist von links nach rechts zu lesen, d.h. aus f´(x)>0 in einem bestimmten Intervall kann auf strenge Monotonie von f geschlossen werden - aber nicht umgekehrt. Wenn f in einem bestimmten Intervall streng monoton wächst, kann es dort durchaus einzelne Stellen geben, an denen die Ableitung gleich null ist (waagrechte Tangente).

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Dargestellt ist der Graph der Funktion f. Kreuze richtig an. Pro Zeile können mehrere oder auch kein Kreuz(e) gesetzt werden.

  • graphik
     
    f
     
    x
     
    < 0
         
     
    f
     
    x
     
    > 0
         
     
    f ´
     
    x
     
    < 0
         
     
    f ´
     
    x
     
    > 0
       für alle 
    x ∈ ]−2; 1[
     
    f
     
    2
    =
    0
         
     
    f ´
     
    2
    =
    0
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Die mittlere Änderungsrate einer Funktion f im Intervall [a; b] ergibt sich durch

[ f(b) − f(a) ] / ( b − a)

Aufgrund seiner Struktur nennt man diesen Term auch Differenzenquotient.
Beispiel
(1) Maximilian war Ende Januar 1,35 m groß und Ende Juni 1,37 m. Wie groß ist in diesem Zeitraum die durchschnittliche Änderungsrate?
(2) Wie groß ist die durchschnittliche Änderungsrate der Normalparabel mit Scheitel im Ursprung im Intervall [3;7]?
Graphisch lässt sich die mittlere Änderungsrate im Intervall [a; b] als Steigung der Geraden (Sekante) durch die entsprechenden Punkte des Graphen veranschaulichen.

Die lokale Änderungsrate an der Stelle x = a ist folglich die Steigung der Geraden (Tangente), die den Graph im entsprechenden Punkt berührt. Man stelle sich zum besseren Verständnis ein winziges Intervall [a; b] und die zugehörige Sekante vor. Lässt man das Intervall weiter schrumpfen, also b gegen a gehen, wird aus der Sekante eine Tangente.

Beispiel
Schätze die mittlere Änderungsrate im angegebenen Intervall bzw. die lokale Änderungsrate an der gegebenen Stelle ab.
graphik
Intervall [-1; 5]:       
 
m
 
≈ ?
Stelle x
0
=
4:       
 
m ≈ ?

Die Ableitung f´ einer differenzierbaren Funktion f liefert für jede definierte Stelle x die lokale Änderungsrate (= Steigung des Graphen von f an dieser Stelle). Insbesondere zeigt das Vorzeichen von f´ an, ob f im betrachteten Intervall zunimmt oder abnimmt:

f´(x) f bzw. Gf
> 0 streng monoton zunehmend bzw. wachsend
< 0 streng monoton abnehmend bzw. fallend
= 0 waagrechte Tangente

Achtung: die Tabelle ist von links nach rechts zu lesen, d.h. aus f´(x)>0 in einem bestimmten Intervall kann auf strenge Monotonie von f geschlossen werden - aber nicht umgekehrt. Wenn f in einem bestimmten Intervall streng monoton wächst, kann es dort durchaus einzelne Stellen geben, an denen die Ableitung gleich null ist (waagrechte Tangente).

Beispiel
graphik
In welchen Intervallen gilt 
f
 
x
 
> 0,
   
f
 
x
 
< 0,
   
f ´
 
x
 
> 0,
   
f ´
 
x
 
< 0?
An welchen Stellen gilt 
f
 
x
=
0,
   
f ´
 
x
=
0?