Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Besitzt der Differenzenquotient

    [ f(x) − f(a) ] / (x − a)

    für x → a (x ≠ a) keinen Grenzwert, so ist f an der Stelle a nicht differenzierbar.

    Das kann sich beispielsweise darin äußern, dass die einseitigen Grenzwerte nicht übereinstimmen. Der Graph weist an einer solchen Stelle einen Knick auf.

Ist f an der "Nahtstelle" differenzierbar? Bestimme dazu die einseitigen Grenzwerte des Differenzenquotienten.

f(x)
=
1
x
·
x
graphik
linksseitig:
 
;
rechtsseitig:
 
  • Nebenrechnung
Lernvideo
Ableitung einer Funktion
Lernvideo
Graph der Ableitung skizzieren
Lernvideo
Graph einer Stammfunktion skizzieren

Besitzt der Differenzenquotient

[ f(x) − f(a) ] / (x − a)

für x → a (x ≠ a) keinen Grenzwert, so ist f an der Stelle a nicht differenzierbar.

Das kann sich beispielsweise darin äußern, dass die einseitigen Grenzwerte nicht übereinstimmen. Der Graph weist an einer solchen Stelle einen Knick auf.

Beispiel
Ist f an der "Nahtstelle" differenzierbar? Bestimme dazu die einseitigen Grenzwerte des Differenzenquotienten.
graphik
 
f(x)
=
x
·
2
x

Die Ableitung f´ einer differenzierbaren Funktion f liefert für jede definierte Stelle x die lokale Änderungsrate (= Steigung des Graphen von f an dieser Stelle). Insbesondere zeigt das Vorzeichen von f ´ an, ob f im betrachteten Intervall zunimmt oder abnimmt:

f´(x) f bzw. Gf
> 0 streng monoton zunehmend bzw. wachsend
< 0 streng monoton abnehmend bzw. fallend
= 0 waagrechte Tangente
Beispiel
Dargestellt ist der Graph der Funktion f. In welchen Intervallen verläuft der Graph der Ableitung f ' oberhalb/unterhalb der x-Achse und wo hat er Nullstellen?
graphik

Die Funktion F ist genau dann eine Stammfunktion von f, wenn F´ = f (wenn also f die Ableitung von F ist). Damit gilt folgender Zusammenhang

F bzw. GF f (x)
streng monoton steigend > 0 im betrachteten Intervall
streng monoton fallend < im betrachteten Intervall
keine Steigung (waagrechte Tangente) = 0
Hinsichtlich f, F (Stammfunktion von f) und f´ gilt also die "Ableitungskette"

F → f → f´

Ihre Graphen stehen in folgendem Zusammenhang:

F bzw. f f bzw.
streng monoton steigend verläuft oberhalb der x-Achse
streng monoton fallend verläuft unterhalb der x-Achse
waagrechte Tangente schneidet/berührt die x-Achse