Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Distributivgesetz:

    a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

    (a + b ) : c = a : c + b : c

    Statt + kann man auch − einsetzen, d.h. das Disriputivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Multipliziere aus und vereinfache.

7
·
23
11d
=
  • Nebenrechnung

Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Disriputivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel 1
Multipliziere aus und gib gekürzt an:
2
9
·
3
5
6c
=
?
Beispiel 2
Multipliziere aus und gib gekürzt an:
1
3
·
2a
+
12b
+
3c
=
?
Beispiel 3
Multipliziere aus und gib gekürzt an:
5
3
 
ab
1
3
 
a
2
3b
·
6
5
=
?
Beim Multiplizieren zweier Summen muss jeder Summand der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert werden (ergibt sich aus dem Distributivgesetz):

(a + b) · (c + d) = ac + ad + bc + bd

Beispiel 1
Multipliziere aus und vereinfache:
2
5
 
uv
2
3
·
15u
2
+
1
uv
Beispiel 2
b
2
3
 
b
·
6a
·
a
30%
+
1
2
 
a
2
·
b
4ab
ab
2
Die Anzahl der Summanden, die sich nach dem Ausmultiplizieren mehrerer Summen ergibt, lässt sich ebenso leicht bestimmen wie die höchsten Variablenpotenzen:
  • Anzahl der Summanden: Nimm von jeder Klammer die Anzahl der Summanden und bilde das Produkt.
  • Höchste Potenz einer Variable: Nimm aus jeder Klammer die höchste Potenz dieser Variable und multipliziere diese Potenzen.
Beispiel
Wie viele Summanden ergeben sich nach dem Ausmultiplizieren und welche höchsten Variablenpotenzen?
x
+
2
y
2
·
2y
5
x
5x
2
+
1
3
·
x
+
1
·
y
3
Bei komplexeren Termen hilft meist die folgende Strategie weiter:
  1. Klammern auflösen/ausmultiplizieren
  2. gleichartige Terme durch Addieren/Subtrahieren zusammenfassen
Beispiel
Vereinfache:
3
2
9
 
v
2
3
1
3
·
6
v
·
2
Unterscheide zwischen
  • a · (b · c) = a · b · c   (A-Gesetz)
  • a · (b + c) = a · b + a · c   (D-Gesetz)
Beispiel
Vereinfache:
12,5%
·
s
:
5
4
+
1,8s
·
1
1
2
 
s
+
t
2
3t
·
s
:
6
·
2t