Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Jedem Winkel α lässt sich auf dem Einheitskreis genau ein Punkt P(x|y) zuordnen. Der Winkel wird dabei von der positiven x-Achse aus entgegen dem Uhrzeigersinn gedreht. Man definiert:

    cos(α) = x und sin(α) = y

    Sinus- und Kosinuswerte können also als Koordinaten von Punkten des Einheitskreises aufgefasst werden.

Entscheide anhand des Einheitskreises, welcher Wert plausibel ist.

graphik
cos
 
200° ≈   
0,3
 
   
0,1
 
   
0,9
 
   
0,7
sin
 
200° ≈   
0,3
 
   
0,5
 
   
0,7
 
   
0,9
  • Nebenrechnung

Zugriff ab Level 2 nur mit Benutzerkonto

Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen

Tipp

Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen anderen Aufgabentyp wählen. Oder ein paar ausgewählte Schritt-für-Schritt-Aufgaben lösen, die wir für dich zusammengestellt haben.

Jedem Winkel α lässt sich auf dem Einheitskreis genau ein Punkt P(x|y) zuordnen. Der Winkel wird dabei von der positiven x-Achse aus entgegen dem Uhrzeigersinn gedreht. Man definiert:

cos(α) = x und sin(α) = y

Sinus- und Kosinuswerte können also als Koordinaten von Punkten des Einheitskreises aufgefasst werden.
Beispiel 1
Ermittle anhand des Einheitskreises:
sin
 
450°
=
?
cos
 
360°
=
?
Beispiel 2
Mit welchen der folgenden vier Werte stimmt   cos (31°)   überein? Entscheide anhand des Einheitskreises.
cos
31°
cos
 
149°
cos
 
211°
cos
 
121°

Sei P der Punkt des Einheitskreises, der dem Winkel α zugeordnet ist.

Winkel Spiegelung von P Vozeichenänderung Formeln
−α bzw.
360° − α
an der x-Achse nur sin sin(α) = − sin(360° − α)
cos(α) = cos(360° − α)
180° − α an der y-Achse nur cos sin(α) = sin(180° − α)
cos(α) = − cos(180° − α)
α ± 180° am Ursprung sin und cos sin(α) = − sin(α ± 180°)
cos(α) = − cos(α ± 180°)
α ± 360° P verändert sich nicht sin(α) = sin(α ± 360°)
cos(α) = cos(α ± 360°)
Beispiel 1
Führe   sin( 139° )   auf einen Winkel im Intervall [180° ; 270°] zurück.
Beispiel 2
Gib alle Lösungen im Intervall [0° ; 360°] an.
sin
x
=
0,7