Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login

Bestimme, falls möglich, die Funktionswerte an den gegebenen Stellen. Gib "!" ein, wenn dies nicht möglich ist. Brüche in der Form a/b eingeben.

f(x)
=
x
2
3
·
x
+
4
f(0)
=
f(-2)
=
f(5)
=
  • Nebenrechnung
Die Menge aller Zahlen, die man in den Funktionsterm einer Funktion f einsetzen darf, heißt Definitionsmenge der Funktion f.
  • Achsensymmetrie zur y-Achse:
  • Für alle x aus dem Definitionsbereich gilt:
    f(x) = f(-x)

  • Punktsymmetrie zum Ursprung:
  • Für alle x aus dem Definitionsbereich gilt:
    -f(x) = f(-x)

  • Spezialfall: ganzrationale Funktionen

  • f(x) = f(-x) gilt genau dann, wenn nur gerade Exponenten auftauchen.
    Also gilt:
    Hat eine ganzrationale Funktion nur x-Potenzen mit geraden Hochzahlen, so ist der Graph der Funktion achsensymmetrisch zur y-Achse.

    -f(x) = f(-x) gilt genau dann, wenn nur ungerade Exponenten auftauchen.
    Also gilt:
    Hat eine ganzrationale Funktion nur x-Potenzen mit ungeraden Hochzahlen, so ist der Graph der Funktion punktsymmetrisch zum Ursprung.


  • Hinweis:
  • Die einzige Funktion deren Graph sowohl achsensymmetrisch zur y-Achse also auch punktsymmetrisch zum Ursprung ist, ist f(x)=0.
Beispiel
Untersuche, ob der Graph der Funktion achsensymmetrisch zur y-Achse oder punktsymmetrisch zum Ursprung ist.
a) 
f
 
x
=
5x
2
x
2
+
2
b) 
f
 
x
=
5x
2
x
3
+
2x
c) 
f
 
x
=
5x
2
x
3
+
2
Um zu überprüfen, ob ein Punkt P( x | y ) auf dem Graphen von f liegt, setzt man den x-Wert in den Funktionsterm ein und berechnet den Termwert. Ist das Ergebnis der y-Wert des Punktes, dann liegt der Punkt auf der Geraden.
  • Wenn von einem Punkt auf dem Graphen nur die x-Koordinate bekannt ist, erhält man die y-Koordinate, indem man die x-Koordinate in den Funktionsterm einsetzt und den Wert des Funktionsterms berechnet. Das Ergebnis ist die y-Koordinate.
  • Wenn von einem Punkt auf dem Graphen nur die y-Koordinate bekannt ist, erhält man die x-Koordinate, indem man den Funktionsterm gleich der y-Koordinate setzt und die entstehende Gleichung nach x auflöst. Das Ergebnis ist die x-Koordinate.