Hilfe
  • Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

    √a · √b = √(a · b)

    Ein Quotient von Wurzeln lässt sich als Quotient unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

    √a : √b = √(a : b)

    Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

    a√c + b√c = (a + b)√c

    Achtung: √a + √b ≠ √(a+b)

    Oft kann man teilweise die Wurzel ziehen. Sofern a nicht negativ ist, kann man den Faktor a² unabhängig vom Faktor b radizieren:

    √(a² · b) = √(a²) · √b = a · √b

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Berechne, falls möglich. Gib "!" ein, falls das Ergebnis keine rationale Zahl ist. Gib Brüche in der Form a/b ein.

  • 1
    ·
    8
    =
    1
    +
    8
    =
    1
    +
    8
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Quadratwurzeln - Termumformungen mit Variablen Teil 1
Lernvideo

Quadratwurzeln - Termumformungen mit Variablen Teil 1

Kanal: Mathegym

Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

√a · √b = √(a · b)

Ein Quotient von Wurzeln lässt sich als Quotient unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

√a : √b = √(a : b)

Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

a√c + b√c = (a + b)√c

Achtung: √a + √b ≠ √(a+b)

Oft kann man teilweise die Wurzel ziehen. Sofern a nicht negativ ist, kann man den Faktor a² unabhängig vom Faktor b radizieren:

√(a² · b) = √(a²) · √b = a · √b

Beispiel 1
50
·
2
=
?
50
2
=
?
50
=
?
Beispiel 2
9
·
16
=
?
9
+
16
=
?
9
+
16
=
?
Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

√a · √b = √(a · b)

Unter anderem ermöglicht diese Regel, Wurzeln teilweise zu radizieren. Sofern a nicht negativ ist, kann man den Faktor a² unabhängig vom Faktor b radizieren:

√(a² · b) = √(a²) · √b = a · √b

Beispiel
Vereinfache:
3
 
45
·
18
=
?
Rationalmachen des Nenners bedeutet, einen Bruch so umzuformen, dass der Nenner wurzelfrei ist. Meistens erreicht man das durch Erweitern:
  • steht √a im Nenner, so erweitert man mit √a
  • steht √a + √b im Nenner, so erweitert man mit √a − √b (3. binomische Formel)
Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Distributivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel 1
3
·
3
27
=
?
Beispiel 2
Vereinfache:
12
+
20
2
 
27
·
5
36
Beispiel 3
Vereinfache:
3
 
32
108
·
5
 
3
6
Beachte beim Rechnen mit Variablen, dass (weil a auch negativ sein könnte)

√(a²) = | a |

Der Betragstrich ist nicht nötig, wenn a < 0 ausgeschlossen werden kann. Ist hingegen bekannt, dass a negativ ist, kann man statt des Betrags auch konkret schreiben

√(a²) = −a

Ob eine Variable unter der Wurzel positiv oder negativ ist, erschließt sich oft indirekt aus der Aufgabenstellung.

Beispiel 1
Vereinfache (x ≠ 0)
3
 
4x
2
y
:
12y
4
Beispiel 2
Vereinfache (a > 0, b > 0):
a
2
+
ab
a
+
b
:
a
1