Gegenüber der normalen Sinuskurve (Kosinus analog) ist der Graph der Funktion
- y = sin(x + c) in x-Richtung nach rechts (c < 0) bzw. links (c > 0) verschoben.
- y = sin(x) + d in y-Richtung nach oben (d > 0) bzw. unten (d < 0) verschoben.
Beispiel
Gib die zum Graph passende Funktionsgleichung an:

y | = |
|
Lösung siehe Video:
Siehe auch
Mathe-Aufgaben zu diesem Thema
Online-Übungen, die du direkt im Browser bearbeiten und lösen kannst!
Ähnliche Themen
- Sinusfunktion: welche Parameter wirken sich auf Amplitude und Periode aus? Präzisiere, bei welchen Werten es zu Streckung/Stauchung/Spiegelung an der y-Achse kommt.
- Wie kommt man schrittweise von der normalen Sinuskurve zur Kurve mit der Gleichung y = a·sin[b·(x + c)] ; b>0 ?
- f(x) = a·sin(b·x); b>0 Gib Amplitude, Periode und Nullstellen an.
- Beschreibe, wie sich der Graph der Funktion y = a·sin(x + c) + d aus der normalen Sinuskurve ergibt.
- Was lässt sich bzgl. des Graphen von y = sin(b·x) hinsichtlich Periode und Nullstellen sagen? Wie ist es bei y = cos(b·x) ?
Weitere Tausende Mathe-Aufgaben...
- Bei uns findest du Online-Übungen zu fast allen Themen der Klassen 5-12.
- Aufgaben direkt im Browser bearbeiten und lösen.
- Für die Fächer Mathematik, Latein, Englisch, Chemie und Physik.

Und ganz nebenbei: Mathegym wurde ausgezeichnet mit dem "Deutschen Bildungs-Award 2022". Damit belegen wir erneut den 1. Platz bei einem Mathe-Lernportal-Vergleich. Weitere Infos