Beim linearen Wachstum ist der absolute Zuwachs in gleichen Zeitschritten konstant, d.h.
  f(t+1) − f(t) = d (absolute Zunahme pro Zeitschritt)

Beim exponentiellen Wachstum ist der relative Zuwachs konstant, d.h.
  f(t+1) : f(t) = a (Wachstumsfaktor)

Bezogen auf eine Wertetabelle heißt das:
  • Bei linearem Wachstum ist die Differenz benachbarter Funktionswerte konstant.
  • Bei exponentiellem Wachstum ist der Quotient benachbarter Funktionswerte konstant.
Unterscheide zwischen Wachstum (d > 0 bzw. a > 1) und Abnahme (d < 0 bzw. 0 < a < 1)
Beispiel 1
Handelt es sich um lineares oder exponentielles Wachstum (oder weder noch)?
(a)     
 
x
1
2
3
4
5
y
1
3
2
3
1
1
3
2
2
3
5
1
3
 
(b)     
 
x
1
2
3
4
5
y
1
3
1
2
3
3
4
1
3
6

Lösung siehe Video:
Beispiel 2
Ergänze so, dass es sich um exponentielles Wachstum handelt.
x
1
2
3
4
5
y
5
7
?
?
0,245
?

Lösung siehe Video:
Online-Übungen und Aufgaben

Online üben und motiviert lernen?

Jetzt unsere Online-Übungen ausprobieren!

  • Keine Registrierung erforderlich!
  • Aufgaben direkt im Browser bearbeiten und lösen.
  • Für die Fächer Mathematik, Latein, Englisch, Chemie und Physik.
Zum Aufgabenbereich