Hilfe
  • Hilfe zum Thema
    Den Erwartungswert E(X) einer Zufallsvariablen X erhält man, indem man jeden Wert von X mit der zugehörigen Wahrscheinlichkeit multipliziert und daraus die Summe bildet.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 1
  • Berechne den Erwartungswert der Zufallsgröße X.
  • X: Anzahl von "Kopf" beim dreimaligen Wurf einer gezinkten Münze
    k
    0
    1
    2
    3
    P
     
    X
    =
    k
    0,216
    0,432
    0,288
    0,064
    E
     
    X
    =
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema
Wie berechnet man den Erwartungswert einer Zufallsvariablen?
#448
Den Erwartungswert E(X) einer Zufallsvariablen X erhält man, indem man jeden Wert von X mit der zugehörigen Wahrscheinlichkeit multipliziert und daraus die Summe bildet.
Beispiel
Zwei Würfel werden gleichzeitig geworfen. Bei einem 6er-Pasch erhält der Spieler 20€, bei jedem anderen Pasch 5€, ansonsten muss er 2€ zahlen. Lohnt sich dieses Spiel für ihn auf Dauer?
Was ist die Varianz einer Zufallsgröße X und wie berechnet man sie?
#586
Die Varianz Var(X) einer Zufallsgröße X gibt grob gesagt an, wie stark die Werte einer Zufallsgröße vom Erwartungswert abweichen. Um sie zu berechnen, muss man zunächst den Erwartungswert μ bestimmen. Für jeden Wert k, den X annehmen kann, ist dann folgende Rechnung durchzuführen:
  • den Erwartungswert μ abziehen
  • Ergebnis quadrieren
  • Ergebnis mit zugehöriger Wahrscheinlichkeit multiplizieren
Die Summe dieser Produkte (für alle k) ergibt die Varianz, also

Var(x) = Σ (k − μ)2· P(X = k)