Hilfe
  • Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also

    \[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \]

    Ein Quotient von Wurzeln lässt sich als Quotient unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also

    \[ \sqrt{a} : \sqrt{b} = \sqrt{a : b} \]

    Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

    \[ a\sqrt{c} + b\sqrt{c} = (a + b)\sqrt{c} \]

    Beachte dabei: \( \sqrt{a} + \sqrt{b} \neq \sqrt{a + b} \)

    Oft kann man teilweise die Wurzel ziehen. Sofern \(a\) nicht negativ ist, kann man den Faktor \(a^2\) unabhängig vom Faktor \(b\) radizieren:

    \[ \sqrt{a^2 \cdot b} = \sqrt{a^2} \cdot \sqrt{b} = a \cdot \sqrt{b} \]
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Vereinfache so weit wie möglich ohne Taschenrechner. Gib Brüche in der Form "a/b" ein. Gib "!" ein, falls das Ergebnis keine rationale Zahl ist.

  • 3
    ·
    27
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie lauten die Rechenregeln für Quadratwurzeln und was bedeutet "teilweise radizieren"?
#713

Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also

\[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \]

Ein Quotient von Wurzeln lässt sich als Quotient unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also

\[ \sqrt{a} : \sqrt{b} = \sqrt{a : b} \]

Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

\[ a\sqrt{c} + b\sqrt{c} = (a + b)\sqrt{c} \]

Beachte dabei: \( \sqrt{a} + \sqrt{b} \neq \sqrt{a + b} \)

Oft kann man teilweise die Wurzel ziehen. Sofern \(a\) nicht negativ ist, kann man den Faktor \(a^2\) unabhängig vom Faktor \(b\) radizieren:

\[ \sqrt{a^2 \cdot b} = \sqrt{a^2} \cdot \sqrt{b} = a \cdot \sqrt{b} \]
Beispiel 1
50
·
2
=
?
50
2
=
?
50
=
?
Beispiel 2
1
2
·
3
7
·
2
3
·
14
=
?
Wie funktioniert die Addition und Subtraktion von Quadratwurzeln?
#226

Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

\[ a\sqrt{c} + b\sqrt{c} = (a + b)\sqrt{c} \]

Achtung: \( \sqrt{a} + \sqrt{b} \neq \sqrt{a + b} \)

Beispiel 1
5
·
10
9
·
10
=
?
Beispiel 2
Fasse zusammen:
2
 
3
3
 
2
+
3
2
 
2
Was sind die drei binomischen Formeln und wofür werden sie verwendet?
#264

Die drei Binomischen Formeln (BF) lauten:

  1. (a + b)² = a² + 2ab + b²
  2. (a − b)² = a² − 2ab + b²
  3. (a + b) (a − b) = a² − b²
In dieser Richtung (links mit Klammer, rechts ohne) dienen die Formeln dazu, Klammern schneller auszumultiplizieren. Ohne Kenntnis der BF müsste man die Klammern auf herkömmlich Art ("jeder mit jedem") ausmultiplizieren.