Hilfe
  • Jeder Winkel kann in Grad angegeben werden (z.B. 90° für den rechten Winkel) oder im Bogenmaß (π/2).

    Man muss sich das so vorstellen: Sticht man in den Scheitel des 90°-Winkels ein und zeichnet einen Kreis mit Radius 1, so ist der Bogen zwischen den beiden Schenkeln genau π/2 lang.

    Umrechnung zwischen Grad- und Bogenmaß mittels Dreisatz, ausgehend von

    180° (Grad)    entspricht    π (Bogenmaß)

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Gib als Vielfaches von π (also im Bogenmaß) an. Erwartet wird ein gekürzter Bruch.

  • 60°
     
     
     
    π
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie wird ein Winkel von 90° in Bogenmaß umgerechnet und wie kann man sich das Bogenmaß vorstellen?
#455
Jeder Winkel kann in Grad angegeben werden (z.B. 90° für den rechten Winkel) oder im Bogenmaß (π/2).

Man muss sich das so vorstellen: Sticht man in den Scheitel des 90°-Winkels ein und zeichnet einen Kreis mit Radius 1, so ist der Bogen zwischen den beiden Schenkeln genau π/2 lang.

Umrechnung zwischen Grad- und Bogenmaß mittels Dreisatz, ausgehend von

180° (Grad)    entspricht    π (Bogenmaß)

Beispiel 1
Wandle 230° ins Bogenmaß um.
Beispiel 2
Drücke die Winkel π/11 und 5 (Bogenmaß) jeweils in Grad aus.
Wie sind Sinus und Kosinus am Einheitskreis definiert?
#333
Jedem Winkel α lässt sich auf dem Einheitskreis genau ein Punkt P(x|y) zuordnen. Der Winkel wird dabei von der positiven x-Achse aus entgegen dem Uhrzeigersinn gedreht. Man definiert:

cos(α) = x und sin(α) = y

Sinus- und Kosinuswerte können also als Koordinaten von Punkten des Einheitskreises aufgefasst werden.
Beispiel 1
Ermittle anhand des Einheitskreises:
sin
 
450°
=
?
cos
 
360°
=
?
Beispiel 2
Mit welchen der folgenden vier Werte stimmt 
cos
31°
 überein? Entscheide anhand des Einheitskreises.
cos
31°
   
cos
149°
   
cos
211°
   
cos
121°
Wie beeinflusst die Spiegelung eines Punktes P auf dem Einheitskreis an der x-Achse, y-Achse oder am Ursprung die Sinus- und Kosinuswerte?
#334

Sei P der Punkt des Einheitskreises, der dem Winkel α zugeordnet ist.

Winkel Spiegelung von P Vorzeichenänderung Formeln
−α bzw.
360° − α
an der x-Achse nur sin sin(α) = − sin(360° − α)
cos(α) = cos(360° − α)
180° − α an der y-Achse nur cos sin(α) = sin(180° − α)
cos(α) = − cos(180° − α)
α ± 180° am Ursprung sin und cos sin(α) = − sin(α ± 180°)
cos(α) = − cos(α ± 180°)
α ± 360° P verändert sich nicht sin(α) = sin(α ± 360°)
cos(α) = cos(α ± 360°)
Beispiel 1
Führe sin(139°) auf einen Winkel im Intervall [180° ; 270°] zurück.
Beispiel 2
Führe cos(2314°) auf einen Winkel zwischen 0° und 90° zurück:
Beispiel 3
Gib alle Lösungen im Intervall [0°;360°] an.
sin
x
=
0,7
Welche sind die Sinus- und Kosinuswerte der Winkel 0°, 30°, 45°, 60° und 90°?
#1101
Folgende Sinus- und Kosinuswerte sollte man (wie Vokabeln) auswendig lernen:
  • sin(0°)=0
  • sin(30°)=0,5
  • sin(45°)=0,5√2
  • sin(60°)=0,5√3
  • sin(90°)=1

Die Kosinuswerte sind dazu spiegelbildlich: cos(0°)=1, ..., cos(90°)=0

Merkhilfe: die Werte von oben nach unten ergeben sich, indem man 0,5 mit √0, √1 usw. multipliziert.

Beispiel
sin x
=
1
2
 
2
Bestimme alle Lösungen im Intervall 
π
 
 
x
 
 
π.
Wie lauten die Ableitungen der Funktionen sin(x) und cos(x)?
#441
f (x) = sin(x) ⇒ f ´ (x) = cos(x)
f (x) = cos(x) ⇒ f ´ (x) = -sin(x)
Beispiel
f
 
x
=
2
 
sin
x
Bei welchen 
x ∈ [0; 2π[
 ist die Tangente des Graphen 
G
f
 parallel zur Gerade durch die Punkte (0|−1) und (1|-3)
Wie beeinflussen Parameter die Amplitude und Periode der Sinusfunktion und wann kommt es zu Streckung, Stauchung oder Spiegelung?
#337
Durch bestimmte Vorfaktoren lassen sich Amplitude und Periode der normalen Sinuskurve verändern. Amplitude beschreibt die Ausprägung in y-Richtung, normalerweise beträgt sie 1. Unter Periode versteht man die Länge des Intervalls, indem sich der Graph nicht wiederholt, normalerweise beträgt diese 2π. Gegenüber der normalen Sinuskurve (Kosinus analog) ist der Graph der Funktion
  • y = a·sin(x) in y-Richtung gestreckt (|a| > 1) bzw. gestaucht (|a| < 1). Ist a negativ, erscheint der Graph zudem an der x-Achse gespiegelt.
  • y = sin(b·x), b>0, in x-Richtung gestreckt (0 < b < 1) bzw. gestaucht (b > 1). Ihre Periode ergibt sich aus 2π / b.
Beispiel
Der unten abgebildete Graph gehört zu einer Gleichung der Form
y
=
a
·
sin
 
b
·
x
, wobei a>0 und b>0
graphik
Bestimme a und b.
Wie bestimmt man Amplitude, Periode und Nullstellen der Funktion f(x) = a·sin(b·x) mit b>0?
#494
Die Funktion f(x) = a·sin(b·x); b>0 bzw. deren Graph besitzt:
  • die Amplitude |a|,
  • die Periode 2π / b
  • und damit folgende Nullstellen: außer 0 die halbe Periode und alle (positiven wie negativen) Vielfachen davon.
Für den Kosinus gelten bzgl. Amplitude und Periode dieselben Gesetzmäßigkeiten; das Rezept für die Nullstellen lautet hier: Nimm eine viertel Periode und addiere dazu (bzw. ziehe ab) eine halbe Periode (bzw. Vielfache davon).
Wie transformiert man die Standard-Sinuskurve zur Funktion y = a·sin[b·(x + c)], b>0?
#342
Der Graph der Funktion y = a·sin[b·(x + c)] ; b>0 entsteht aus der normalen Sinuskurve durch folgende Schritte:
  • Streckung/Stauchung in x-Richtung; die Periode ergibt sich durch 2π/b, vergößert sich also für b<1 und verkleinert sich für b>1
  • Verschiebung in x-Richtung um |c|; bei negativem Wert nach rechts, ansonsten nach links;
  • Streckung in y-Richtung mit dem Faktor |a|; zusätzlich Spiegelung an der x-Achse, wenn a negativ ist;
Für den Kosinus gelten die selben Gesetzmäßigkeiten.
Beispiel
Welche der angegebenen Funktionsterme passen zum abgebildeten Graphen?
graphik
a
 
1,75
·
sin
 
0,6
·
x
π
6
b
 
1,75
·
sin
 
0,6
·
x
+
1,5π
c
 
1,5
·
sin
 
0,6
·
x
+
1,5π
    
    
d
 
1,75
·
sin
 
5
3
·
x
+
1,5π
e
 
1,75
·
sin
 
0,6
·
x
+
1,5π
+
1
f
 
1,75
·
sin
 
0,75
·
x
+
1,5π
Wie verändert sich die normale Sinuskurve zu y = a·sin(x + c) + d?
#846
Der Graph der Funktion  y = a·sin(x+c)+d  entsteht aus der normalen Sinuskurve durch:
  • Streckung (|a|>1) bzw. Stauchung (|a|<1) in y-Richtung mit dem Faktor |a|; zusätzlich Spiegelung an der x-Achse, wenn a negativ ist
  • Verschiebung um |c| Einheiten nach links (c>0) bzw. nach rechts (c<0)
  • Verschiebung um |d| Einheiten nach unten (d<0) bzw. nach oben (d>0)
Für den Kosinus gelten die selben Gesetzmäßigkeiten.
Beispiel
Zeichne die Graphen zu folgenden Funktionen:
a) 
0,5
·
sin
 
x
b) 
sin
 
x
π
3
c) 
cos
 
x
1
d) 
1,5
·
cos
 
x
+
π
2
Wie beeinflusst der Faktor b die Periode und Nullstellen der Funktionen y = sin(b·x) und y = cos(b·x)?
#847
Die Funktion f(x) = sin(b·x); b>0 bzw. deren Graph
  • ist gegenüber der normalen Sinuskurve in x-Richtung gestreckt (b<1) bzw. gestaucht (b>1).
  • besitzt die Periode 2π / b
  • und damit folgende Nullstellen: außer 0 die halbe Periode und alle (positiven wie negativen) Vielfachen davon.
Für den Kosinus gelten bzgl. Streckung/Stauchung und Periode dieselben Gesetzmäßigkeiten; das Rezept für die Nullstellen lautet hier: Nimm eine viertel Periode und addiere dazu (bzw. ziehe ab) eine halbe Periode (bzw. Vielfache davon).
Beispiel
Zeichne die Graphen zu folgenden Funktionen:
a) 
sin
 
2
3
·
x
b) 
cos
 
3
2
·
x