Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
7.4 Rechtwinklige Dreiecke - Satz des Thales, Matheübungen
Kongruenz, besondere Dreiecke und Dreieckskonstruktionen - Lehrwerk mathe.delta (5.-9. Klasse)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
TIPP
GeoGebra:
Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen. Klicke unten rechts auf das orange GeoGebra-Symbol, um die Aufgabe mit Hilfe von GeoGebra zu bearbeiten.
Konstruiere (mit Zirkel und Lineal) ein rechtwinkliges Dreieck ABC mit den vorgegebenen Eigenschaften. Miss dann die gefragte Größe und kreuze richtig an.
Zwischenschritte aktivieren
Gegeben: Hypotenuse c = 7 cm, a = 3 cm
Die Seite
AC
hat dann gerundet die Länge
6,3 cm
6,5 cm
6,7 cm
6,9 cm
GeoGebra
GeoGebra
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Checkos: 0 max.
Ergebnis prüfen
Wenn du ein Benutzerkonto hast,
logge dich bitte zuvor ein.
GeoGebra-Editor
Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen.
Geogebra-Editor anzeigen
Hypotenuse c = 7 cm, a = 3 cm
Konstruiere das zugehörige rechtwinklige Dreieck und miss dann
AC
aus.
Wenn du mit der Konstruktion fertig bist, scrolle zurück nach oben und gib bei der Aufgabe das passende Ergebnis ein.
Zum Ändern der Größe gestrichelte Linie ziehen
Stoff zum Thema (+Video)
Lernvideo
Satz des Thales+Kehrsatz+Beweise
Kanal: Mathegym
Was besagt der Satz des Thales und was ist der Thaleskreis?
#787
Satz des Thales:
Liegen A, B und C auf einem Kreis und geht
AB
durch den Mittelpunkt, so ist das Dreieck ABC bei C rechtwinklig. Man spricht vom "Thaleskreis" über
AB
.
Umgekehrt gilt: ist das Dreieck ABC bei C rechtwinklig, so liegt C auf dem Thaleskreis über
AB
.
Beispiel 1
Welche der folgenden Dreiecke sind rechtwinklig?
Beispiel 2
Ermittle durch Konstruktion alle Punkte, von denen aus die beiden Strecken a und b unter einem rechten Winkel erscheinen.
Titel
×
...
Schließen
Speichern
Abbrechen