Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login

Zwei Brüche haben folgende Nenner. Finde ihren kleinsten gemeinsamen Nenner.

Nenner: 4; 5
kleinster gemeinsamer Nenner:
 
  • Nebenrechnung

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Brüche mit gleichem Nenner werden addiert, indem man ihre Zähler addiert und den Nenner beibehält.
Beispiel
2
3
+
5
3
=
2
+
5
3
=
7
3
4
5
1
5
=
4
1
5
=
3
5
Jede natürliche Zahl g lässt sich als Bruch ("Scheinbruch") darstellen. Dessen Zähler ist g mal so groß wie der Nenner. Z.B. 3 = 6/2 = 9/3 = 12/4 ... (unendlich viele Möglichkeiten)
Beispiel
?
+
7
5
=
9
  • gemischte Zahl + gemischte Zahl = (ganze Zahl + ganze Zahl) + (Bruch + Bruch)
  • Gemischte Zahl − Gemischte Zahl = (ganze Zahl − ganze Zahl) + (Bruch − Bruch)
Zwischen den Klammern steht immer ein Plus !
Beispiel
6
3
4
2
3
5
=
?
Bei der Subtraktion gemischter Zahlen kann es hilfreich sein, den Minuend (Zahl vor dem Minus) auf folgende Weise umzuformen: Von der ganzen Zahl wird ein Ganzes abgezogen, dafür der Zähler des Bruches um den Betrag des Nenners erhöht.
Beispiel
3
1
5
4
5
=
?
Das kleinste gemeinsame Vielfache zweier Zahlen erhält man oft am schnellsten, indem man sich die Vielfachenreihe der größeren Zahl ansieht.Um zum Beispiel das kleinste gemeinsame Vielfache von 15 und 25 zu ermitteln, betrachtet man der Reihe nach die Vielfachen von 25, also 25, 50, 75... Bei 75 kann man abbrechen, weil 75 auch durch 15 teilbar ist (25 und 50 nicht). Also lautet das Ergebnis 75.Noch schneller geht es, wenn beide Zahlen Primzahlen (z.B. 11 und 5) oder teilerfremd sind (z.B. 8 und 9): In diesem Fall muss man die beiden Zahlen nur multiplizieren.
Brüche können nur dann addiert oder subtrahiert werden, wenn sie gleichnamig sind (d.h. Nenner gleich). Ist das nicht der Fall, muss man sie durch Erweitern/Kürzen gleichnamig machen.
Beispiel
Berechne:
2
3
+
1
7
=
?
Die Suche nach einem möglichst kleinen, gemeinsamen Nenner ist gleichbedeutend mit der Suche nach dem kleinsten gemeinsamen Vielfachen (kgV). Dabei gehst du bei größeren Zahlen am besten so vor:
  1. Zerlege beide Nenner vollständig in Primfaktoren.
  2. Stelle nun das kgV aus den jeweils größten Potenzen der auftretenden Primzahlen zusammen.
Beispiel
Gesucht ist das kleinste gemeinsame Vielfache (kgV) von 735 und 1260.
Wenn du den gemeinsamen Nenner gefunden hast, musst du nur noch richtig erweitern. Den jeweiligen Erweiterungsfaktor findest du am einfachsten, wenn du die Primfaktorzerlegung des ursprünglichen Nenners mit der Primfaktorzerlegung des gemeinsamen Nenners vergleichst.
Beispiel
Berechne.
25
84
25
126
=
?
Ermittle dazu zunächst den kleinsten gemeinsamen Nenner und erweitere dann beide Brüche passend.