Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Leitet man f ab, so erhält man f ´ (erste Ableitung von f).

    Leitet man f ´ ab, so erhält man f ´´ (zweite Ableitung von f).

    Um f ´´ bilden zu können, muss f zweimal differenzierbar sein.

Variablenpotenzen sind in der Form x^n einzugeben.

f
 
x
=
3x
5
3x
2
+
2x
f ''
 
x
=
  • Nebenrechnung

Lernvideo
Zweite Ableitung und Krümmung

Leitet man f ab, so erhält man f ´ (erste Ableitung von f).

Leitet man f ´ ab, so erhält man f ´´ (zweite Ableitung von f).

Um f ´´ bilden zu können, muss f zweimal differenzierbar sein.
f bzw Gf f ´ f ´´
streng monoton zunehmend positiv
streng monoton abnehmend negativ
linksgekrümmt streng monoton zunehmend positiv
rechtsgekrümmt streng monoton abnehmend negativ
Beispiel
Lies das jeweilige Vorzeichen von f(-1), f '(-1) und f ''(-1) ab. Gib jeweils ein möglichst großes Intervall an (geschätzt), in dem f, f 'bzw. f '' positiv ist.
graphik
Die Krümmungsintervalle einer zweimal differenzierbaren Funktion ermittelt man mit Hilfe einer Vorzeichenuntersuchung von f ´´. Bestimme dazu zunächst die Nullstellen von f ´´.
Beispiel
Bestimme das Krümmungsverhalten der Funktion
 
f
 
x
=
x
4
2x
3
9
2
 
x
2
+
2x
 
.

Sei a eine Nullstelle der ersten Ableitung, also f ´(a) = 0. Dann gilt:

f ´´ (a ) < 0 ⇒ relatives Maximum bei x = a

f ´´ (a ) > 0 ⇒ relatives Minimum bei x = a

Vorsicht: Aus f ´´ (a) = 0 folgt NICHT, dass kein relatives Extremum vorliegt. Überprüfe in diesem Fall f ´ auf Vorzeichenwechsel an der Nullstelle x = a. Zur Erinnerung:

VZW +/- von f ´ ⇔ relatives Maximum

VZW -/+ von f ´ ⇔ relatives Minimum

kein VZW von f´ ⇔ Terrassenpunkt

Gute Anhaltspunkte für eine genaue Zeichnung des Funktionsgraphen liefern folgende Untersuchungen ( Kurvendiskussion):
  • maximale Definitionsmenge
  • Punkt- und Achsensymmetrie
  • Schnittpunkte mit der x-Achse
  • Verhalten in der Umgebung der Definitionslücken
  • Verhalten im Unendlichen
  • relative Extremwerte und Monotonie
Beispiel
f
 
x
=
x
3
x
2
5x
3
Diskutiere hinsichtlich Symmetrie zum Koordinatensystem, Nullstellen, Verhalten im Unendlichen, Extremwerte und Monotonie und skizziere den Graphen.