Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Gauß-Verfahren

    Ein lineares Gleichungssystem kann übersichtlich gelöst werden, indem man es zunächst auf Stufenform bringt. Dies bezeichnet man als Gauß-Verfahren.

    Dabei sind folgende Umformungen zugelassen:

    • Zwei Gleichungen werden miteinander vertauscht.
    • Eine Gleichung wird mit einer von Null verschiedenen Zahl multipliziert.
    • Eine Gleichung wird durch die Summe/Differenz von ihr und einer anderen Gleichung des Systems ersetzt.

    Wenn man etwas Übung hat, können auch mehrere dieser Schritte gleichzeitig durchgeführt werden.

    Wenn man das lineare Gleichungssystem auf Stufenform gebracht hat, löst man die Gleichungen schrittweise nach den gegebenen Variablen auf.

    Es ist ganz wichtig, dass du das Gauß-Verfahren verstehst, damit du beim Lösen von Gleichungssystemen mit dem GTR in der Lage bist, die Taschenrechner-Anzeige korrekt interpretieren zu können.

Löse das Gleichungssystem

x
1
+
 
 
 
 
 
x
2
+
x
2
+
 
 
 
x
3
=
7
x
3
=
3
x
3
=
1
x
1
=
, x
2
=
, x
3
=
  • Nebenrechnung

Zugriff ab Level 2 nur mit Benutzerkonto

Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen

Tipp

Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen anderen Aufgabentyp wählen. Oder ein paar ausgewählte Schritt-für-Schritt-Aufgaben lösen (Fach Mathematik), die wir für dich zusammengestellt haben.

Gauß-Verfahren

Ein lineares Gleichungssystem kann übersichtlich gelöst werden, indem man es zunächst auf Stufenform bringt. Dies bezeichnet man als Gauß-Verfahren.

Dabei sind folgende Umformungen zugelassen:

  • Zwei Gleichungen werden miteinander vertauscht.
  • Eine Gleichung wird mit einer von Null verschiedenen Zahl multipliziert.
  • Eine Gleichung wird durch die Summe/Differenz von ihr und einer anderen Gleichung des Systems ersetzt.

Wenn man etwas Übung hat, können auch mehrere dieser Schritte gleichzeitig durchgeführt werden.

Wenn man das lineare Gleichungssystem auf Stufenform gebracht hat, löst man die Gleichungen schrittweise nach den gegebenen Variablen auf.

Es ist ganz wichtig, dass du das Gauß-Verfahren verstehst, damit du beim Lösen von Gleichungssystemen mit dem GTR in der Lage bist, die Taschenrechner-Anzeige korrekt interpretieren zu können.

Beispiel
Löse folgendes Gleichungssystem mit dem Gauß-Verfahren:
2x
1
 
 
4x
1
 
3x
2
+
2x
2
+
2x
2
 
x
3
+
3x
3
+
3x
3
 
=
1
 
=
1
 
=
6
 
x
1
=
?
x
2
=
?
x
3
=
?