Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Jede nicht senkrechte Gerade und damit jede lineare Zuordnung kann durch eine Gleichung ähnlich

    y = 1/3 x + 1

    beschrieben werden.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 8 in Level 6
  • Vervollständige die zugehörige Gleichung (Brüche in der Form "a/b" bzw. "-a/b" angeben)
  • graphik
    y
    =
    x
    +
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Lineare Funktionen - Graph und Funktionsterm
Lernvideo

Lineare Funktionen - Graph und Funktionsterm

Kanal: Mathegym
 
Lernvideo

Kanal: Mathegym intern

Wie verändern sich die y-Werte bei einer linearen Zuordnung y = ...x... in Abhängigkeit von x und welches Vorzeichen hat der y-Wert für x = 0?
#429
Mit zunehmenden x-Werten
  • nehmen auch die y-Werte zu, falls die Gerade steigt,
  • nehmen die y-Werte ab, falls die Gerade fällt,
  • sind die y-Werte konstant, falls die Gerade parallel zur x-Achse verläuft.
Für x = 0 ergibt sich
  • ein positiver y-Wert, falls die Gerade die y-Achse oberhalb der x-Achse schneidet,
  • ein negativer y-Wert, falls die Gerade die y-Achse unterhalb der x-Achse schneidet,
  • der y-Wert 0, falls die Gerade durch den Ursprung geht.
Was ist die allgemeine Gleichung einer Geraden und was bedeuten die darin vorkommenden Parameter?
#632
Eine lineare Funktion mit der Gleichung y = m·x + b ergibt grafisch immer eine Gerade. Dabei ist m die Steigung (zeigt an, wie stark die Gerade steigt oder fällt) und b der y-Achsenabschnitt (zeigt an, wo die Gerade die y-Achse schneidet) der Gerade.
  • Ist m positiv, so steigt die Gerade (von links nach rechts)
  • Ist m negativ, so fällt die Gerade (von links nach rechts)
  • Ist m = 0, so verläuft die Gerade parallel zur x-Achse
Beispiel 1
Welche Informationen lassen sich bzgl. der Steigung m und des y-Achsen-Abschnitts b ablesen?
graphik
Beispiel 2
Bestimme zeichnerisch: Welchen y-Achsenabschnitt besitzt die Gerade g, die durch den Punkt (-3 ; -1) geht und parallel ist zur Geraden h mit der Gleichung y = 1 − 0,25x ?
Beispiel 3
Zeichne die Gerade mit folgender Gleichung:
 
y
=
2
1
3
 
x
Wie zeichnet man eine Gerade, wenn man ihre Gleichung kennt, ohne ein Steigungsdreieck zu verwenden?
#812
Gegeben ist die Gleichung einer Geraden. Um sie zu zeichnen, benötigt man zwei Punkte. Diese erhält man z.B., indem man zwei unterschiedliche x-Werte in die Gleichung einsetzt und die zugehörigen y-Werte ausrechnet. Praktischer Weise sollte man mit x=0 anfangen (wenig Rechenaufwand; der zugehörige y-Wert ist der y-Achsenabschnitt).
Beispiel
Zeichne die Gerade mit folgender Gleichung:
 
y
=
2
1
3
 
x
Wie bestimmt man den Funktionsterm einer grafisch dargestellten Geraden?
#811
Um den Funktionsterm einer abgebildeten Geraden aufzustellen, musst du ihren y-Achsenabschnitt und ihre Steigung ermitteln:
  1. Der y-Achsenabschnitt lässt sich direkt aus dem Schnittpunkt der Geraden mit der y-Achse ablesen.
  2. Die Steigung erhältst du so: suche zwei Punkte auf der Geraden, deren Koordinaten sich gut ablesen lassen und betrachte das Steigungsdreieck zwischen diesen beiden Punkten. Bilde den Bruch aus der Höhe des Dreiecks im Zähler und der Breite des Dreiecks im Nenner und kürze diesen, falls möglich. Falls die Gerade fällt, schreibe noch ein Minus vor den oben ermittelten Bruch. Damit hast du die Steigung.
Beispiel
Lies jeweils die genauen Werte für m und b ab:
graphik
Wie lautet die Gleichung einer nicht senkrechten Geraden?
#418
Jede nicht senkrechte Gerade und damit jede lineare Zuordnung kann durch eine Gleichung ähnlich

y = 1/3 x + 1

beschrieben werden.
Beispiel
Beschreibe die drei Geraden jeweils durch eine Gleichung von der Art y = ? · x + ?.
graphik
- - - - - - - - - - - Schwarz:
Für x = 0 ergibt sich y = -2, also hat der Summand am Ende des Terms den Wert -2.
graphik
Am sogenannten Steigungsdreieck erkannt man: Nimmt x um 2 Einheiten zu, so nimmt y um 3 Einheiten zu, also hat der Faktor vor x den Wert 3/2 .
y
=
3
2
 
x
2
- - - - - - - - - - - Grün:
Für x = 0 ergibt sich y = -1, also hat der Summand am Ende des Terms den Wert -1.
graphik
Nimmt x um 2 Einheiten zu, so nimmt y um 1 Einheit ab, also hat der Faktor vor x den Wert -1/2 ("Minus" da "abnehmend").
y
=
1
2
 
x
1
- - - - - - - - - - - Orange:
y ist immer 0,5 (unabhängig von x), also lautet die Gleichung y = 0,5 (das heißt der Faktor vor x hat den Wert 0).
Wie werden senkrechte und waagrechte Geraden in der Mathematik beschrieben?
#152
Eine Besonderheit bilden waagrechte und senkrechte Geraden.
  • senkrechte Gerade werden durch die Gleichung "x = c" beschrieben
  • waagrechte Gerade werden durch die Gleichung "y = c" beschrieben.

Beachte, dass die Gleichung der senkrechten Gerade keine Funktionsgleichung ist und somit weder ein y-Achsenabschnitt noch eine Steigung angegeben werden kann. Das ist schon daran erkennbar, dass hier Punkte des Graphen "übereinander" liegen, was bei einer Funktion nicht vorkommen darf.

Beispiel
Gib für die eingezeichneten Geraden sowie für die x-und y-Achse eine Geradengleichung an:
graphik