Hilfe
  • Der Heron-Algorithmus ist ein Verfahren, mit dem sich √a, also die Wurzel von a für a∈Q+, mit zunehmender Genauigkeit bestimmen lässt.

    1. Man startet am besten mit einer Zahl x1, deren Quadrat in etwa a entspricht. Teilt man a durch diesen Startwert x1, so erhält man eine Zahl y1, die zusammen mit x1 das Intervall absteckt, in dem √a liegt.
    2. Man rechnet nun die Mitte dieses Intervalls aus, also ½·(x1+y1), und fährt mit diesem neuen Wert (= x2) in dem Algorithmus fort.
    Die dabei entstehenden Intervalle, die alle √a enthalten, werden immer kleiner und die Abschätzung somit immer ganauer.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Führe den Heron-Algorithmus bis zum verlangten Schritt durch.

  • 12
    =
    ?
    x
    1
    =
    4
    x
    2
    =
    x
    3
    =
    ,
     
     
     
    Nicht runden!
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Heron-Algorithmus
Lernvideo

Heron-Algorithmus

Kanal: Mathegym

Wie funktioniert der Heron-Algorithmus zur Bestimmung von Quadratwurzeln?
#871

Der Heron-Algorithmus ist ein Verfahren, mit dem sich √a, also die Wurzel von a für a∈Q+, mit zunehmender Genauigkeit bestimmen lässt.

  1. Man startet am besten mit einer Zahl x1, deren Quadrat in etwa a entspricht. Teilt man a durch diesen Startwert x1, so erhält man eine Zahl y1, die zusammen mit x1 das Intervall absteckt, in dem √a liegt.
  2. Man rechnet nun die Mitte dieses Intervalls aus, also ½·(x1+y1), und fährt mit diesem neuen Wert (= x2) in dem Algorithmus fort.
Die dabei entstehenden Intervalle, die alle √a enthalten, werden immer kleiner und die Abschätzung somit immer ganauer.
Beispiel
Bestimme 
5
 auf drei Dezimalstellen genau.