Hilfe
  • Hilfe zum Thema

    Wahrscheinlichkeiten der Art P( X ≤ k ) einer binomial verteilten Zufallsgröße X können mit unterschiedlichen Hilfsmitteln (WTR, CAS/MMS, GTR, Tafelwerk) bestimmt werden. Man beachte, welche Hilfsmittel für die Prüfung zugelassen sind!

    Um P( Z > k ) zu bestimmen, ermittelt man erst den Wahrscheinlichkeitswert für das Gegenereignis "Z ≤ k" und zieht diesen dann von 1 ab.

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 4 in Level 1
  • Berechne mithilfe der kumulativen Binomialverteilung. Ergebnis(se) mit 1 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!
  • Eine Gärtnerei verkauft Samen, deren Keimfähigkeit mit 80% beziffert wird. Familie Müller kauft 50 Samen.
    Wahrscheinlichkeit, dass sich höchstens 40 Samen entwickeln:
     
    %
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema
Wie bestimmt man Wahrscheinlichkeiten der Form P(Z≤k) und P(Z>k)?
#509

Wahrscheinlichkeiten der Art P( X ≤ k ) einer binomial verteilten Zufallsgröße X können mit unterschiedlichen Hilfsmitteln (WTR, CAS/MMS, GTR, Tafelwerk) bestimmt werden. Man beachte, welche Hilfsmittel für die Prüfung zugelassen sind!

Um P( Z > k ) zu bestimmen, ermittelt man erst den Wahrscheinlichkeitswert für das Gegenereignis "Z ≤ k" und zieht diesen dann von 1 ab.

Wie unterscheidet man bei binomialverteilten Zufallsgrößen und welche Experimente folgen keiner Binomialverteilung?
#1151

Bei binomialverteilten Zufallsgrößen (Bernoullikette der Länge n und Trefferwahrscheinlichkeit p) ist zwischen "nicht kumuliert", also P(Z=k) und "kumuliert", also P(Z≤k), zu unterscheiden.

Berechnung von Wahrscheinlichkeiten mit dem GTR:

Gegeben: Bernoullikette der Länge n mit Trefferwahrscheinlichkeit p.

Wahrscheinlichkeit für GENAU k Treffer:

Bn,p = P(X = k) = binompdf (n , p , k)

Wahrscheinlichkeit für HÖCHSTENS k Treffer:

Fn,p = P(X ≤ k) = binomcdf (n , p , k)

Bei vielen Experimenten, z.B. Ziehen mehrerer Kugeln mit einem Griff oder hintereinander ohne Zurücklegen, liegt keine Bernoullikette vor, daher kommen hier andere Formeln zur Anwendung.

Beispiel
Aus einer Urne mit 10 Kugeln, von denen 4 weiß sind, werden 5 durch Zufall gezogen. Gib jeweils einen Term an für die Wahrscheinlichkeit…
a) dreimal Weiß, wenn hintereinander mit Zurücklegen gezogen wird.
b) höchstens dreimal Weiß, wenn hintereinander mit Zurücklegen gezogen wird.
c) dreimal Weiß, wenn hintereinander ohne Zurücklegen gezogen wird.
d) dreimal Weiß, wenn alle 5 Kugeln auf einmal gezogen werden.