Hilfe
  • Hilfe zum Thema
    Stammfunktion einer Potenzfunktion: Für alle ganzen Zahlen n ≠ -1 gilt

    ∫ xn dx = 1 / (n + 1) · xn + 1 + C

    Man geht also umgekehrt zum Ableiten vor: beim Ableiten wird zuerst mit n multipliziert, dann der Exponent n um 1 reduziert. Beim Bilden der Stammfunktion wird zuerst der Exponent n um 1 vergrößert, dann durch n+1 geteilt.

    Spezialfall n = -1:

    ∫ 1/x dx = ln |x| + C

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 1
  • Berechne. Brüche sind in der Form "a/b", gemischte Zahlen in der Form "a b/c" anzugeben.
  • 2
    4
    3
    +
    x
    2x
    2
     
    dx
    =
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema
Wie berechnet man die Stammfunktion einer Potenzfunktion?
#570
Stammfunktion einer Potenzfunktion: Für alle ganzen Zahlen n ≠ -1 gilt

∫ xn dx = 1 / (n + 1) · xn + 1 + C

Man geht also umgekehrt zum Ableiten vor: beim Ableiten wird zuerst mit n multipliziert, dann der Exponent n um 1 reduziert. Beim Bilden der Stammfunktion wird zuerst der Exponent n um 1 vergrößert, dann durch n+1 geteilt.

Spezialfall n = -1:

∫ 1/x dx = ln |x| + C