Hilfe
  • Allgemeine Hilfe zu diesem Level
    Schreibe die Klammer zunächst als wertgleiche Summe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Distributivgesetz:

    a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

    (a + b ) : c = a : c + b : c

    Statt + kann man auch − einsetzen, d.h. das Distributivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 1
  • Multipliziere. Gib die gefragten Brüche gekürzt an.
  • 2
    3
    ·
    6
    5
     
    x
    9y
    +
    1
    2
    =
     
    x
    +
     
    y
    +
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Was besagt das Distributivgesetz in der Mathematik?
#119
Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Distributivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel 1
Multipliziere aus und gib gekürzt an:
5
3
 
ab
1
3
 
a
2
3b
·
6
5
=
?
Beispiel 2
Multipliziere aus:
5
3
 
a
2b
+
3c
·
4
+
9d
Beispiel 3
Multipliziere aus und gib gekürzt an:
2
9
·
3
5
6c
=
?
Beispiel 4
Multipliziere aus und gib gekürzt an:
1
3
·
2a
+
12b
+
3c
=
?
Wie löst man zwei eingeklammerte Terme auf, die jeweils nur Plusrechnungen enthalten und miteinander multipliziert werden?
#123
Beim Multiplizieren zweier Summen muss jeder Summand der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert werden (ergibt sich aus dem Distributivgesetz):

(a + b) · (c + d) = ac + ad + bc + bd

Beispiel 1
Multipliziere aus und vereinfache:
a) 
x
+
3
·
4
5x
b) 
10
a
·
7
+
b
c) 
x
2
1
2
3
 
a
·
3x
1
2
Beispiel 2
Multipliziere aus und vereinfache:
2
5
 
uv
2
3
·
15u
2
+
1
uv
Wie löst man Klammern der Art a*(...) korrekt auf?
#1402
Achte beim Auflösen von Klammern der Art a⋅(...) oder (...)⋅(...) darauf, ob in der Klammer eine Summe oder ein Produkt steht. Nur bei einer Summe wird jeder Summand in der Klammer mit dem Faktor vor der Klammer multipliziert (D-Gesetz).
Beispiel
Unterscheide:
2x
·
3x
+
5y
2x
·
3x
·
5y
Was bedeutet Ausklammern und wie funktioniert es?
#122
Enthält jeder einzelne Summand einer Summe denselben Faktor, so kann man diesen ausklammern, also als Faktor vor die Summenklammer schreiben (Distributivgesetz "rückwärts"):

a · b + a · c = a · (b + c)

(Ebenso mit − statt +)

Beispiel 1
110
z
·
44
=
22
·
5
22
·
2z
=
22
·
5
2z
Beispiel 2
Klammere so aus, dass in der Klammer betragsmäßig möglichst kleine ganze Zahlen stehen:
8
9
 
z
+
4
2
3
Beispiel 3
 
 
38
·
z
z
·
19
·
x
=
19
·
2
·
z
z
·
19
·
x
=
19
·
z
·
2
19
·
z
·
x
=
19z
·
2
x
Wie wird eine Summe unter Verwendung des Distributivgesetzes ausgeklammert?
#655
Enthält jeder einzelne Summand einer Summe denselben Faktor, so kann man diesen ausklammern, also als Faktor vor die Summenklammer schreiben (Distributivgesetz "rückwärts"):

a · b + a · c = a · (b + c)


Man kann auch ganze Terme, z.B. Summen, ausklammern:

(x+y) · b + (x+y) · c = (x+y) · (b + c)