Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Beachte beim Rechnen mit Variablen, dass (weil a auch negativ sein könnte)

    √(a²) = | a |

    Der Betragstrich ist nicht nötig, wenn a < 0 ausgeschlossen werden kann. Ist hingegen bekannt, dass a negativ ist, kann man statt des Betrags auch konkret schreiben

    √(a²) = −a

    Ob eine Variable unter der Wurzel positiv oder negativ ist, erschließt sich oft indirekt aus der Aufgabenstellung.

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 4 in Level 18
  • Vereinfache
  • x
    2
    xy
    2
    ·
    6
    x
    y
    +
    27x
    =
     ▉ 
     
     ▉ 
    Schritt 1 von 4
    x
    2
    xy
     
     (siehe linke Wurzel) lässt sich als Produkt folgender Faktoren schreiben:
    x
    y
    y
    x
    x
    y
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Quadratwurzeln - Grundrechenarten, teilweise radizieren
Lernvideo

Quadratwurzeln - Grundrechenarten, teilweise radizieren

Kanal: Mathegym
Quadratwurzeln - Termumformungen mit Variablen Teil 1
Lernvideo

Quadratwurzeln - Termumformungen mit Variablen Teil 1

Kanal: Mathegym

Wie lauten die Rechenregeln für Quadratwurzeln und was bedeutet "teilweise radizieren"?
#713

Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also

\[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \]

Ein Quotient von Wurzeln lässt sich als Quotient unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also

\[ \sqrt{a} : \sqrt{b} = \sqrt{a : b} \]

Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

\[ a\sqrt{c} + b\sqrt{c} = (a + b)\sqrt{c} \]

Beachte dabei: \( \sqrt{a} + \sqrt{b} \neq \sqrt{a + b} \)

Oft kann man teilweise die Wurzel ziehen. Sofern \(a\) nicht negativ ist, kann man den Faktor \(a^2\) unabhängig vom Faktor \(b\) radizieren:

\[ \sqrt{a^2 \cdot b} = \sqrt{a^2} \cdot \sqrt{b} = a \cdot \sqrt{b} \]
Beispiel 1
1
2
·
3
7
·
2
3
·
14
=
?
Beispiel 2
50
·
2
=
?
50
2
=
?
50
=
?
Beispiel 3
9
·
16
=
?
9
+
16
=
?
9
+
16
=
?
Wie funktioniert die Multiplikation und Division von Quadratwurzeln und was versteht man unter teilweisem Radizieren?
#228

Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also \[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \]

Unter anderem ermöglicht diese Regel, Wurzeln teilweise zu radizieren. Sofern \(a\) nicht negativ ist, kann man den Faktor \(a^2\) unabhängig vom Faktor \(b\) radizieren:

\[ \sqrt{a^2 \cdot b} = \sqrt{a^2} \cdot \sqrt{b} = a \cdot \sqrt{b} \]
Beispiel 1
Vereinfache:
3
 
45
·
18
=
?
Beispiel 2
Radiziere teilweise:
720
=
?
Was besagt das Distributivgesetz in der Mathematik?
#119
Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Distributivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel 1
3
·
3
27
=
?
Beispiel 2
Vereinfache:
12
+
20
2
 
27
·
5
36
Beispiel 3
Vereinfache:
3
 
32
108
·
5
 
3
6
Wie kann man \( \sqrt{a^2} \) vereinfachen, wenn a auch negativ sein könnte?
#229
Beachte beim Rechnen mit Variablen, dass (weil a auch negativ sein könnte)

√(a²) = | a |

Der Betragstrich ist nicht nötig, wenn a < 0 ausgeschlossen werden kann. Ist hingegen bekannt, dass a negativ ist, kann man statt des Betrags auch konkret schreiben

√(a²) = −a

Ob eine Variable unter der Wurzel positiv oder negativ ist, erschließt sich oft indirekt aus der Aufgabenstellung.

Beispiel 1
Vereinfache (x ≠ 0)
3
 
4x
2
y
:
12y
4
Beispiel 2
Vereinfache (a > 0, b > 0):
a
2
+
ab
a
+
b
:
a
1