Hilfe
  • Wandle zunächst in die Form xn=a um!
  • Die Gleichung xn=a (n ∈ N)
    • hat KEINE Lösung, wenn n eine gerade Zahl ist und a<0.
    • hat GENAU ZWEI Lösungen, wenn n eine gerade Zahl und a>0, nämlich die n-te Wurzel von a als auch deren Gegenzahl.
    • hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a>0, nämlich die n-te Wurzel von a.
    • hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a<0, nämlich die Gegenzahl der n-te Wurzel von |a|.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Kreuze alle richtigen Lösungen (gerundet auf die zweite Dezimalstelle) an. Falls die Gleichung nicht lösbar ist, kreuze keine einzige Lösung an.

  • 5x
    3
    +
    5
    =
    20
    L = { 
    1,33
    ;   
    1,33
    ;   
    1,44
    ;   
    1,51
     }
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie viele Lösungen hat die Gleichung x^n=a (n ∈ N) in Abhängigkeit von a und n?
#880
Die Gleichung xn=a (n ∈ N)
  • hat KEINE Lösung, wenn n eine gerade Zahl ist und a<0.
  • hat GENAU ZWEI Lösungen, wenn n eine gerade Zahl und a>0, nämlich die n-te Wurzel von a als auch deren Gegenzahl.
  • hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a>0, nämlich die n-te Wurzel von a.
  • hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a<0, nämlich die Gegenzahl der n-te Wurzel von |a|.
Beispiel
Löse, falls möglich:
a
 
x
4
=
5
     
b
 
x
4
=
5
     
c
 
x
3
=
5
     
d
 
x
3
=
5
     
e
 
x
3
=
0