Setzt sich ein Zufallsexperiment aus mehreren Stufen zusammen (z.B. dreimal hintereinander Würfeln oder sechs Kugeln hintereinander aus einer Urne ziehen) und hängt die Anzahl der Möglichkeiten auf jeder Stufe nicht davon ab, was auf einer vorangegangenen Stufe gezogen wurde, so lässt sich die Anzahl aller Versuchsausgänge mit dem sogenannten Zählprinzip bestimmen: Betrachte dazu auf jeder Stufe die Anzahl der Möglichkeiten und multipliziere diese Zahlen miteinander.
Oft entstehen hierbei Produkte der Art n·(n-1)·(n-2)·...·2·1; dafür gibt es die abkürzende Schreibweise n! ("n-Fakultät").
Laut dem Zählprinzip kann man die gesamte Anzahl der Pfade in einem Baumdiagramm berechnen, indem man die Anzahlen der Verzweigungen aller Stufen miteinander multipliziert.
Das funktioniert natürlich nur, wenn innerhalb einer Stufe nicht unterschiedliche Verzweigungszahlen vorliegen.