Hilfe
  • Hilfe speziell zu dieser Aufgabe
    Falls du Lotto "6 aus 49" nicht kennst: Hier werden aus einer großen Urne, die 49 nummerierte Kugeln 1-49 enthält, nacheinander 6 Kugeln ohne Zurücklegen gezogen. Die Mitspieler haben davor Lottoscheine ausgefüllt und gewinnen, wenn sie auf die richtigen Zahlen gewettet haben.
  • Setzt sich ein Zufallsexperiment aus mehreren Stufen zusammen (z.B. dreimal hintereinander Würfeln oder sechs Kugeln hintereinander aus einer Urne ziehen) und hängt die Anzahl der Möglichkeiten auf jeder Stufe nicht davon ab, was auf einer vorangegangenen Stufe gezogen wurde, so lässt sich die Anzahl aller Versuchsausgänge mit dem sogenannten Zählprinzip bestimmen: Betrachte dazu auf jeder Stufe die Anzahl der Möglichkeiten und multipliziere diese Zahlen miteinander.

    Oft entstehen hierbei Produkte der Art n·(n-1)·(n-2)·...·2·1; dafür gibt es die abkürzende Schreibweise n! ("n-Fakultät").

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu dieser Aufgabe" unterhalb der Aufgabe.

Bestimme nach dem Zählprinzip.

  • Beim Lotto "6 aus 49" (Erklärung des Spiels siehe Hilfe) sind bereits drei Zahlen gezogen worden. Drei Ziehungen stehen noch aus. Wie viele unterschiedliche Zahlenreihen (Beachtung der Reihenfolge!) können sich bzgl. der letzten drei Ziehungen ergeben?
    |Ω| =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie kann das Zählprinzip bei mehrstufigen Zufallsexperimenten angewendet werden? Erkläre dies an einem Beispiel.
#168

Setzt sich ein Zufallsexperiment aus mehreren Stufen zusammen (z.B. dreimal hintereinander Würfeln oder sechs Kugeln hintereinander aus einer Urne ziehen) und hängt die Anzahl der Möglichkeiten auf jeder Stufe nicht davon ab, was auf einer vorangegangenen Stufe gezogen wurde, so lässt sich die Anzahl aller Versuchsausgänge mit dem sogenannten Zählprinzip bestimmen: Betrachte dazu auf jeder Stufe die Anzahl der Möglichkeiten und multipliziere diese Zahlen miteinander.

Oft entstehen hierbei Produkte der Art n·(n-1)·(n-2)·...·2·1; dafür gibt es die abkürzende Schreibweise n! ("n-Fakultät").

Beispiel
Eine vierstellige Zahl soll durch einen Zufallsgenerator erzeugt werden, wobei folgende Vorgaben gemacht werden: an der ersten und dritten Stelle muss eine gerade Ziffer stehen, an der zweiten Stelle eine durch 3 teilbare Ziffer und an letzter Stelle eine Ziffer kleiner als 7. Wie viele Ergebnisse sind möglich?
Wie berechnet man die Anzahl der Pfade in einem Baumdiagramm mit dem Zählprinzip?
#254

Laut dem Zählprinzip kann man die gesamte Anzahl der Pfade in einem Baumdiagramm berechnen, indem man die Anzahlen der Verzweigungen aller Stufen miteinander multipliziert.

Das funktioniert natürlich nur, wenn innerhalb einer Stufe nicht unterschiedliche Verzweigungszahlen vorliegen.

Beispiel
Roman stellt sich ein Menü aus Vor- Haupt- und Nachspeise zusammen. Bei der Vorspeise hat er die Auswahl zwischen X und Y. Bei der Hauptspeise kann er zwischen drei Gerichten A, B und C wählen. Und bei der Nachspeise stehen zwei Optionen R und S zur Auswahl. Wieviele Möglichkeiten hat Roman insgesamt?