Hilfe
  • Hilfe zum Thema
    Bruchterme, bei denen x im Nenner auftritt, sind das Erkennungsmerkmal von gebrochen-rationalen Funktionen.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 1
  • Um was für eine Funktion handelt es sich? Achtung: Nicht immer liegt der jew. Term in der gewohnten Form vor.
  • 2x
    3
    5
      →  
    2
    x
    1
      →  
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Elementare gebrochen-rationale Funktionen
Lernvideo

Elementare gebrochen-rationale Funktionen

Kanal: Mathegym

Was sind die Erkennungsmerkmale von gebrochen-rationalen Funktionen?
#276
Bruchterme, bei denen x im Nenner auftritt, sind das Erkennungsmerkmal von gebrochen-rationalen Funktionen.
Was versteht man unter Asymptoten und wie werden sie dargestellt?
#273

Asymptoten sind Geraden, denen sich der Graph annähert. Der Graph kommt der Asymptote dabei beliebig nahe, ohne sie zu berühren.

Oftmals sind Asymptoten senkrecht oder waagrecht verlaufende Geraden. Z.B.:

  • "y = 5" drückt eine waagrechte Gerade durch den Punkt (0|5) aus.
  • "x = 5" drückt eine senkrechte Gerade durch den Punkt (5|0) aus.
Beispiel 1
Bestimme alle waagrechten und senkrechten Asymptoten des Graphen und gib ihre Gleichungen an.
graphik
Beispiel 2
Gegeben ist die Funktion f mit dem Term 
f(x)
=
6
x
+
2
+
1.
Fülle die Lücken in der Wertetabelle aus und gib die Gleichung der Asymptote an, die man daraus erkennen kann.
x
0
1
1,9
1,97
1,994
f(x)
Was muss bei der Definitionsmenge gebrochen-rationaler Funktionen beachtet werden?
#271
Bei gebrochen-rationalen Funktionen sind die x-Werte auszuschließen ("Definitionslücken"), die zum Wert 0 im Nenner führen.