Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
2.2 Verhalten für x→±∞, Matheübungen
Gebrochen-rationale Funktionen - Lehrwerk Lambacher Schweizer (5.-12. Klasse)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Hilfe
Beispielaufgabe
+Video
Liegt eine gebrochen-rationale Funktion in der Form p(x)/q(x) vor, so kann man anhand des Zählergrads z (also die höchste x-Potenz im Zähler) und des Nennergrads n erkennen, ob der Graph eine waagrechte oder schräge Asymptote besitzt.
x-Achse als waagrechte Asymptote, falls z < n
waagrechte Asymptote, aber nicht die x-Achse, falls z = n; es genügt, die Leitkoeffizienten abzulesen und zu dividieren
schräge Asymptote, falls z = n + 1; die Gleichung lässt sich durch Polynomdivision ermitteln
weder waagrechte noch schräge Asymptote, falls z > n + 1
Liegt eine gebrochen-rationale Funktion in der Form mx+t+b(x) vor, wobei b(x) ein Bruchterm ist, der für betragsmäßige große x-Werte gegen 0 strebt, so ist y=mx+t die Gleichung der Asymptoten.
TIPP
Beispiel-Aufgabe:
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.
Gib die Gleichung der Asymptote in der Form y=m·x+t an, sofern es sich um eine waagrechte oder schräge Asymptote handelt. Gib evtl. auftretende Brüche in der Form "a/b" ein. Falls keine waagrechte oder schräge Asymptote vorliegt, gib "!" ein.
Zwischenschritte aktivieren
f
x
=
2x
+
1
x
−
x
2
Gleichung der Asymptote:
y
=
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Checkos: 0 max.
Ergebnis prüfen
Wenn du ein Benutzerkonto hast,
logge dich bitte zuvor ein.
Stoff zum Thema (+Video)
Wie erkennt man bei gebrochen-rationalen Funktionen die Asymptoten des Graphen?
#326
Liegt eine gebrochen-rationale Funktion in der Form p(x)/q(x) vor, so kann man anhand des Zählergrads z (also die höchste x-Potenz im Zähler) und des Nennergrads n erkennen, ob der Graph eine waagrechte oder schräge Asymptote besitzt.
x-Achse als waagrechte Asymptote, falls z < n
waagrechte Asymptote, aber nicht die x-Achse, falls z = n; es genügt, die Leitkoeffizienten abzulesen und zu dividieren
schräge Asymptote, falls z = n + 1; die Gleichung lässt sich durch Polynomdivision ermitteln
weder waagrechte noch schräge Asymptote, falls z > n + 1
Liegt eine gebrochen-rationale Funktion in der Form mx+t+b(x) vor, wobei b(x) ein Bruchterm ist, der für betragsmäßige große x-Werte gegen 0 strebt, so ist y=mx+t die Gleichung der Asymptoten.
Beispiel
Liegen waagrechte/schräge Asymptoten vor? Wenn ja, bestimme deren Gleichung.
f
x
=
2x
2
3x
−
1
2
g
x
=
2x
2
·
1
−
x
3x
−
1
h
x
=
2x
3x
−
1
2
i
x
=
2x
2
3x
−
1
Beispiel
f
x
=
3x
−
2
·
x
−
1
2x
Forme den Funktionsterm in eine Summe um und gib dann die Gleichung der schrägen Asymptote an.
Titel
×
...
Schließen
Speichern
Abbrechen