Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
2.3 Weitere Grundkonstruktionen, Matheübungen
Achsen- und punktsymmetrische Figuren - Lehrwerk mathe.delta (5.-9. Klasse)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen
Hilfe
Überlege dir zunächst, auf welchen Hilfslinien die vorgegebenen Eigenschaften erfüllt sind und zeichne diese ein.
Die kürzeste Entfernung eines Punktes P zu …
… einem anderen Punkt Q misst man entlang der Strecke von P nach Q.
… einer Geraden g misst man entlang des Lots zu g durch P.
Punkte mit gleicher Entfernung zu …
… zwei Punkten A und B liegen auf der Mittelsenkrechten von A und B.
… zwei sich schneidenden Geraden g und h liegen auf den beiden Winkelhalbierenden von g und h.
Punkte mit einem bestimmten Abstand d zu …
… einem Punkt A liegen auf dem Kreis um A mit Radius d.
… einer Geraden g liegen auf den beiden Parallelen zu g im Abstand d.
TIPP
GeoGebra:
Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen. Klicke unten rechts auf das orange GeoGebra-Symbol, um die Aufgabe mit Hilfe von GeoGebra zu bearbeiten.
Gesucht sind Punkte mit vorgegebenen Eigenschaften. Konstruiere mit Zirkel und Lineal oder verwende Geogebra. Ergebnis(se) mit 1 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!
Zwischenschritte aktivieren
Gegeben sind die Punkte A(-3|1), B(2|1) und C(0,5|-3). Ermittle die Koordinaten der beiden Punkte, die genau 2cm von der Geraden AB und zugleich 2,5cm vom Punkt C entfernt sind. Dabei soll mit P
1
der im Koordinatensystem weiter links liegende Punkt bezeichnet werden.
P
1
|
P
2
|
GeoGebra
GeoGebra
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
GeoGebra-Editor
Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen.
Geogebra-Editor anzeigen
Ermittle die Koordinaten der beiden Punkte, die genau 2cm von der Geraden AB und zugleich 2,5cm vom Punkt C entfernt sind.
Wenn du mit der Konstruktion fertig bist, scrolle zurück nach oben und gib bei der Aufgabe das passende Ergebnis ein.
Zum Ändern der Größe gestrichelte Linie ziehen
Stoff zum Thema
Welche einzigartige Eigenschaft besitzen Punkte auf der Symmetrieachse bezüglich eines Punkts P und seines Spiegelpunkts P´?
#385
Punkte, die auf der Symmetrieachse liegen, haben eine exklusive Eigenschaft (d.h. nur sie haben diese Eigenschaft): Sie sind zu symmetrischen Punkten gleich weit entfernt. D.h.
sind P und P´ zueinander achsensymmetrische Punkte und A ein beliebiger Punkt der Achse, so ist dieser zu P und P´gleich weit entfernt.
sind P und P´ zueinander achsensymmetrische Punkte und von A gleich weit entfernt, so muss A auf der Spiegelachse liegen.
Beispiel 1
Ein Winkel soll halbiert werden.
Beispiel 2
(A) Von P aus soll ein Lot auf g gefällt werden (P ∉ g).
(B) Im Punkt P soll ein Lot zur Geraden g errichtet werden (P ∈ g).
Wie bestimmt man die Entfernung von einem Punkt zu einer Geraden und die Lage von Punkten mit gleicher oder bestimmter Entfernung zu geometrischen Objekten?
#824
Die kürzeste Entfernung eines Punktes P zu …
… einem anderen Punkt Q misst man entlang der Strecke von P nach Q.
… einer Geraden g misst man entlang des Lots zu g durch P.
Punkte mit gleicher Entfernung zu …
… zwei Punkten A und B liegen auf der Mittelsenkrechten von A und B.
… zwei sich schneidenden Geraden g und h liegen auf den beiden Winkelhalbierenden von g und h.
Punkte mit einem bestimmten Abstand d zu …
… einem Punkt A liegen auf dem Kreis um A mit Radius d.
… einer Geraden g liegen auf den beiden Parallelen zu g im Abstand d.
Titel
×
...
Schließen
Speichern
Abbrechen