Hilfe
  • Gleichungen der Art

    ef(x) = b

    löst man, indem man beide Seiten logarithmiert. Merke dir für den Spezialfall b=1, dass

    ln(1)=0.

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Löse ohne Taschenrechner.

  • e
    2x
    6
    =
    1
    x
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie löst man Exponentialgleichungen der Form e^{f(x)} = b?
#859
Gleichungen der Art

ef(x) = b

löst man, indem man beide Seiten logarithmiert. Merke dir für den Spezialfall b=1, dass

ln(1)=0.

Beispiel 1
Löse ohne Taschenrechner.
e
2
5x
=
1
 
Beispiel 2
Löse die Gleichung 
e
2x
1
=
7
.
Welche grundlegenden Rechenregeln gelten für Logarithmen?
#1232

Rechenregeln für den Logarithmus

Summen und Differenzen von Logarithmen mit gleicher Basis lassen sich zusammenfassen:

(1) logb x + logb y = logb (x · y)

(2) logb x − logb y = logb (x : y)

Achtung: Für Produkte und Quotienten zweier Logarithmen gibt es keine entsprechende Formel!

Ist das Argument des Logarithmus eine Potenz, so lässt sich umformen:

(3) logb ar = r · logb a

Wie löst man Gleichungen der Form ln(...) = b und was ergibt sich, wenn b = 0?
#860
Gleichungen der Art

ln(...)=b

löst man, indem man auf beiden Seiten exp anwendet. Merke dir für den Spezialfall b=0, dass

e0=1.

Beispiel
Löse die Gleichung
ln
 
3
11x
=
0
 
ohne Taschenrechner.
Wie sind die Funktionen e^x und ln(x) miteinander verbunden?
#1210
ex und ln(x) kehren sich gegenseitig um. Z.B. gilt
  • e0=1 und ln(1)=0
  • e1=e und ln(e)=1
Allgemein gilt also elnx = ln(ex) = x.
Beispiel
x
2
·
e
x
+
1
3e
x
=
0