Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
2.4 Potenzfunktionen, Matheübungen
Potenzen und Potenzfunktionen - Lehrwerk Westermann (5.-10. Klasse)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Hilfe
Beispielaufgabe
+Video
Die Graphen-Schnittpunkte zweier Potenzfunktionen der Art a·x
n
erhält man, indem man der Reihe nach...
(wie üblich) die beiden Funktionsterme zunächst gleichsetzt,
mit der linken Seite subtrahiert, so dass eine "...=0"-Gleichung entsteht,
auf der linken Seite die kleinere der beiden x-Potenzen ausklammert,
die beiden Faktoren (x-Potenz und Klammer dahinter) nacheinander gleich null setzt.
Bemerkung: Beide Graphen schneiden sich immer im Ursprung des Koordinatensystems. Ob es weitere Schnittpunkte gibt und wie viele, erkennt man, indem man die Graphen skizziert. Beachte beim Lösen auch die symmetrischen Eigenschaften der Graphen, damit sparst du dir Rechenarbeit.
TIPP
Beispiel-Aufgabe:
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.
Die Graphen der angegebenen Potenzfunktionen schneiden sich nicht nur im Ursprung des KOSY. Bestimme alle sonstigen Schnittpunkte.
Zwischenschritte aktivieren
f
x
=
4x
4
g
x
=
−
2
x
3
S
|
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Checkos: 0 max.
Ergebnis prüfen
Wenn du ein Benutzerkonto hast,
logge dich bitte zuvor ein.
Stoff zum Thema (+Video)
Wie bestimmt man die Schnittpunkte der Graphen zweier Potenzfunktionen?
#881
Die Graphen-Schnittpunkte zweier Potenzfunktionen der Art a·x
n
erhält man, indem man der Reihe nach...
(wie üblich) die beiden Funktionsterme zunächst gleichsetzt,
mit der linken Seite subtrahiert, so dass eine "...=0"-Gleichung entsteht,
auf der linken Seite die kleinere der beiden x-Potenzen ausklammert,
die beiden Faktoren (x-Potenz und Klammer dahinter) nacheinander gleich null setzt.
Bemerkung: Beide Graphen schneiden sich immer im Ursprung des Koordinatensystems. Ob es weitere Schnittpunkte gibt und wie viele, erkennt man, indem man die Graphen skizziert. Beachte beim Lösen auch die symmetrischen Eigenschaften der Graphen, damit sparst du dir Rechenarbeit.
Beispiel
f
x
=
1
3
x
7
g
x
=
3
x
5
Ermittle die Anzahl der Schnittpunkte beider Graphen durch grobe Skizze und bestimme die genauen Koordinaten rechnerisch.
Titel
×
...
Schließen
Speichern
Abbrechen